Machine learning-aided analysis for complex local structure of liquid crystal polymers

被引:0
|
作者
Hideo Doi
Kazuaki Z. Takahashi
Kenji Tagashira
Jun-ichi Fukuda
Takeshi Aoyagi
机构
[1] National Institute of Advanced Industrial Science and Technology (AIST),Research Center for Computational Design of Advanced Functional Materials
[2] Research Association of High-Throughput Design and Development for Advanced Functional Materials,Department of Physics, Faculty of Science
[3] Kyushu University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Elucidation of mesoscopic structures of molecular systems is of considerable scientific and technological interest for the development and optimization of advanced materials. Molecular dynamics simulations are a promising means of revealing macroscopic physical properties of materials from a microscopic viewpoint, but analysis of the resulting complex mesoscopic structures from microscopic information is a non-trivial and challenging task. In this study, a Machine Learning-aided Local Structure Analyzer (ML-LSA) is developed to classify the complex local mesoscopic structures of molecules that have not only simple atomistic group units but also rigid anisotropic functional groups such as mesogens. The proposed ML-LSA is applied to classifying the local structures of liquid crystal polymer (LCP) systems, which are of considerable scientific and technological interest because of their potential for sensors and soft actuators. A machine learning (ML) model is constructed from small, and thus computationally less costly, monodomain LCP trajectories. The ML model can distinguish nematic- and smectic-like monodomain structures with high accuracy. The ML-LSA is applied to large, complex quenched LCP structures, and the complex local structures are successfully classified as either nematic- or smectic-like. Furthermore, the results of the ML-LSA suggest the best order parameter for distinguishing the two mesogenic structures. Our ML model enables automatic and systematic analysis of the mesogenic structures without prior knowledge, and thus can overcome the difficulty of manually determining the specific order parameter required for the classification of complex structures.
引用
收藏
相关论文
共 50 条
  • [21] Machine Learning-Aided Design of Materials with Target Elastic Properties
    Zeng, Shuming
    Li, Geng
    Zhao, Yinchang
    Wang, Ruirui
    Ni, Jun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (08): : 5042 - 5047
  • [22] Machine learning-aided characterization of microbubbles for venturi bubble generator
    Ruan, Jian
    Zhou, Hang
    Ding, Zhiming
    Zhang, Yaheng
    Zhao, Luhaibo
    Zhang, Jie
    Tang, Zhiyong
    CHEMICAL ENGINEERING JOURNAL, 2023, 465
  • [23] Machine learning-aided scoring of synthesis difficulties for designer chromosomes
    Zheng, Yan
    Song, Kai
    Xie, Ze-Xiong
    Han, Ming-Zhe
    Guo, Fei
    Yuan, Ying-Jin
    SCIENCE CHINA-LIFE SCIENCES, 2023, 66 (07) : 1615 - 1625
  • [24] Syncretic Feature Selection for Machine Learning-Aided Prognostics of Hepatitis
    Luca Parisi
    Narrendar RaviChandran
    Neural Processing Letters, 2022, 54 : 1009 - 1033
  • [25] Syncretic Feature Selection for Machine Learning-Aided Prognostics of Hepatitis
    Parisi, Luca
    RaviChandran, Narrendar
    NEURAL PROCESSING LETTERS, 2022, 54 (02) : 1009 - 1033
  • [26] Machine learning-aided scoring of synthesis difficulties for designer chromosomes
    Yan Zheng
    Kai Song
    Ze-Xiong Xie
    Ming-Zhe Han
    Fei Guo
    Ying-Jin Yuan
    Science China Life Sciences, 2023, 66 : 1615 - 1625
  • [27] Machine Learning-Aided Optimization of In Vitro Tetraploid Induction in Cannabis
    Jafari, Marzieh
    Paul, Nathan
    Hesami, Mohsen
    Jones, Andrew Maxwell Phineas
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (04)
  • [28] A Dynamic Representation Solution for Machine Learning-Aided Performance Technology
    Palamara, Jason
    Deal, W. Scott
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3
  • [29] Machine learning-aided scoring of synthesis difficulties for designer chromosomes
    Yan Zheng
    Kai Song
    ZeXiong Xie
    MingZhe Han
    Fei Guo
    YingJin Yuan
    Science China(Life Sciences), 2023, 66 (07) : 1615 - 1625
  • [30] Machine learning-aided microRNA discovery for olive oil quality
    Pakdel, Mohammad Hossein
    Asadi, Ali Akbar
    Tavakol, Elahe
    Shariati, Vahid
    Mazinani, Mehdi Hosseini
    PLOS ONE, 2024, 19 (10):