Machine learning-aided characterization of microbubbles for venturi bubble generator

被引:0
|
作者
Ruan, Jian [1 ,2 ]
Zhou, Hang [3 ]
Ding, Zhiming [1 ,2 ]
Zhang, Yaheng [4 ]
Zhao, Luhaibo [1 ,2 ]
Zhang, Jie [1 ,2 ]
Tang, Zhiyong [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Shanghai Adv Res Inst, CAS Key Lab Low Carbon Convers Sci & Engn, Shanghai 201203, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
[3] BASF Adv Chem Co Ltd, Shanghai, Peoples R China
[4] Xuchang Univ, Coll Chem & Mat Engn, Inst Surface Micro & Nano Mat, Key Lab Micronano Mat Energy Storage & Convers Hen, Xuchang 461000, Henan, Peoples R China
[5] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Microbubbles; Venturi bubble generator; Sauter mean diameter; Multi-dimensional dataset; SAUTER MEAN DIAMETER; SIZE DISTRIBUTION; MASS-TRANSFER; FLOW; PERFORMANCE; MECHANISM; BREAKUP; MOTION;
D O I
10.1016/j.cej.2023.142763
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The characterization of microbubbles for venturi tube is important for the associated industrial applications, but still challenging due to the coupling effects of numerous operating factors. Here, we report a machine learning (ML)-aided approach for predicting the characteristics of microbubbles generated by venturi tube. Full factorial design of experiments (DOE) was first carried out, followed by the image post-processing to obtain multi-dimensional dataset. After data cleaning, MLP (Multi-Layer Perception), random forest (RF) and Catboost models were trained to correlate the Sauter mean diameter (ds) to five operating features, namely, throat-to-outlet ratio beta, divergent angle theta, gas-to-liquid ratio alpha, gas Reynolds number Reg and liquid Reynolds number Rel. All three ML models provide excellent predictability on ds, while the Catboost model displays the best extrapolation performance in three investigated scenarios. Internal importance analysis shows that the throat size and Reg play the greatest and least influence on ds, respectively. We also explored the mathematical fitting approach based on obtained experimental dataset. The results show that ML models deliver improved predictive performance over mathematical model, but the latter provides better mechanistic interpretability. This work demonstrates the great potential of ML in the gas-liquid multiphase flow.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Mechanism of Microbubbles and Cavitation Effect on Bubble Breakage in a Venturi Bubble Generator
    Li, Q.
    Guo, X.
    Zhang, J.
    Lei, M.
    Liu, J. L.
    Ming, D. Z.
    Fang, L.
    [J]. JOURNAL OF APPLIED FLUID MECHANICS, 2023, 16 (04) : 778 - 793
  • [2] Machine Learning-Aided Exploration of Ultrahard Materials
    Tawfik, Sherif Abdulkader
    Nguyen, Phuoc
    Tran, Truyen
    Walsh, Tiffany R.
    Venkatesh, Svetha
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (37): : 15952 - 15961
  • [3] Adversarial attacks on machine learning-aided visualizations
    Fujiwara, Takanori
    Kucher, Kostiantyn
    Wang, Junpeng
    Martins, Rafael M.
    Kerren, Andreas
    Ynnerman, Anders
    [J]. JOURNAL OF VISUALIZATION, 2024,
  • [4] Machine learning-aided generative molecular design
    Du, Yuanqi
    Jamasb, Arian R.
    Guo, Jeff
    Fu, Tianfan
    Harris, Charles
    Wang, Yingheng
    Duan, Chenru
    Lio, Pietro
    Schwaller, Philippe
    Blundell, Tom L.
    [J]. NATURE MACHINE INTELLIGENCE, 2024, : 589 - 604
  • [5] Machine learning-aided LiDAR range estimation
    Bastos, Daniel
    Faria, Bruno
    Monteiro, Paulo P.
    Oliveira, Arnaldo S. R.
    Drummond, Miguel, V
    [J]. OPTICS LETTERS, 2023, 48 (07) : 1962 - 1965
  • [6] Performance comparison of swirl-venturi bubble generator and conventional venturi bubble generator
    Wang, Xinyan
    Shuai, Yun
    Zhou, Xiaorui
    Huang, Zhengliang
    Yang, Yao
    Sun, Jingyuan
    Zhang, Haomiao
    Wang, Jingdai
    Yang, Yongrong
    [J]. CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2020, 154 (154)
  • [7] Machine learning-aided engineering of hydrolases for PET depolymerization
    Lu, Hongyuan
    Diaz, Daniel J.
    Czarnecki, Natalie J.
    Zhu, Congzhi
    Kim, Wantae
    Shroff, Raghav
    Acosta, Daniel J.
    Alexander, Bradley R.
    Cole, Hannah O.
    Zhang, Yan
    Lynd, Nathaniel A.
    Ellington, Andrew D.
    Alper, Hal S.
    [J]. NATURE, 2022, 604 (7907) : 662 - +
  • [8] Machine learning-aided design optimization of a mechanical micromixer
    Granados-Ortiz, F-J
    Ortega-Casanova, J.
    [J]. PHYSICS OF FLUIDS, 2021, 33 (06)
  • [9] Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme
    d'Oelsnitz, Simon
    Diaz, Daniel J.
    Kim, Wantae
    Acosta, Daniel J.
    Dangerfield, Tyler L.
    Schechter, Mason W.
    Minus, Matthew B.
    Howard, James R.
    Do, Hannah
    Loy, James M.
    Alper, Hal S.
    Zhang, Y. Jessie
    Ellington, Andrew D.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] Machine learning-aided engineering of hydrolases for PET depolymerization
    Hongyuan Lu
    Daniel J. Diaz
    Natalie J. Czarnecki
    Congzhi Zhu
    Wantae Kim
    Raghav Shroff
    Daniel J. Acosta
    Bradley R. Alexander
    Hannah O. Cole
    Yan Zhang
    Nathaniel A. Lynd
    Andrew D. Ellington
    Hal S. Alper
    [J]. Nature, 2022, 604 : 662 - 667