Adversarial attacks on machine learning-aided visualizations

被引:0
|
作者
Fujiwara, Takanori [1 ]
Kucher, Kostiantyn [1 ]
Wang, Junpeng [2 ]
Martins, Rafael M. [3 ]
Kerren, Andreas [1 ,3 ]
Ynnerman, Anders [1 ]
机构
[1] Linkoping Univ, Norrkoping, Sweden
[2] Visa Res, Palo Alto, CA USA
[3] Linnaeus Univ, Vaxjo, Sweden
关键词
ML4VIS; AI4VIS; Visualization; Cybersecurity; Neural networks; Parametric dimensionality reduction; Chart recommendation; VISUAL ANALYSIS; FRAMEWORK; TRUST;
D O I
10.1007/s12650-024-01029-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
in ML4VIS investigates how to use machine learning (ML) techniques to generate visualizations, and the field is rapidly growing with high societal impact. However, as with any computational pipeline that employs ML processes, ML4VIS approaches are susceptible to a range of ML-specific adversarial attacks. These attacks can manipulate visualization generations, causing analysts to be tricked and their judgments to be impaired. Due to a lack of synthesis from both visualization and ML perspectives, this security aspect is largely overlooked by the current ML4VIS literature. To bridge this gap, we investigate the potential vulnerabilities of ML-aided visualizations from adversarial attacks using a holistic lens of both visualization and ML perspectives. We first identify the attack surface (i.e., attack entry points) that is unique in ML-aided visualizations. We then exemplify five different adversarial attacks. These examples highlight the range of possible attacks when considering the attack surface and multiple different adversary capabilities. Our results show that adversaries can induce various attacks, such as creating arbitrary and deceptive visualizations, by systematically identifying input attributes that are influential in ML inferences. Based on our observations of the attack surface characteristics and the attack examples, we underline the importance of comprehensive studies of security issues and defense mechanisms as a call of urgency for the ML4VIS community.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Machine Learning-Aided Exploration of Ultrahard Materials
    Tawfik, Sherif Abdulkader
    Nguyen, Phuoc
    Tran, Truyen
    Walsh, Tiffany R.
    Venkatesh, Svetha
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (37): : 15952 - 15961
  • [2] Machine learning-aided LiDAR range estimation
    Bastos, Daniel
    Faria, Bruno
    Monteiro, Paulo P.
    Oliveira, Arnaldo S. R.
    Drummond, Miguel, V
    [J]. OPTICS LETTERS, 2023, 48 (07) : 1962 - 1965
  • [3] Machine learning-aided generative molecular design
    Du, Yuanqi
    Jamasb, Arian R.
    Guo, Jeff
    Fu, Tianfan
    Harris, Charles
    Wang, Yingheng
    Duan, Chenru
    Lio, Pietro
    Schwaller, Philippe
    Blundell, Tom L.
    [J]. NATURE MACHINE INTELLIGENCE, 2024, : 589 - 604
  • [4] Adversarial attacks on medical machine learning
    Finlayson, Samuel G.
    Bowers, John D.
    Ito, Joichi
    Zittrain, Jonathan L.
    Beam, Andrew L.
    Kohane, Isaac S.
    [J]. SCIENCE, 2019, 363 (6433) : 1287 - 1289
  • [5] Enablers Of Adversarial Attacks in Machine Learning
    Izmailov, Rauf
    Sugrim, Shridatt
    Chadha, Ritu
    McDaniel, Patrick
    Swami, Ananthram
    [J]. 2018 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2018), 2018, : 425 - 430
  • [6] Machine learning-aided engineering of hydrolases for PET depolymerization
    Lu, Hongyuan
    Diaz, Daniel J.
    Czarnecki, Natalie J.
    Zhu, Congzhi
    Kim, Wantae
    Shroff, Raghav
    Acosta, Daniel J.
    Alexander, Bradley R.
    Cole, Hannah O.
    Zhang, Yan
    Lynd, Nathaniel A.
    Ellington, Andrew D.
    Alper, Hal S.
    [J]. NATURE, 2022, 604 (7907) : 662 - +
  • [7] Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme
    d'Oelsnitz, Simon
    Diaz, Daniel J.
    Kim, Wantae
    Acosta, Daniel J.
    Dangerfield, Tyler L.
    Schechter, Mason W.
    Minus, Matthew B.
    Howard, James R.
    Do, Hannah
    Loy, James M.
    Alper, Hal S.
    Zhang, Y. Jessie
    Ellington, Andrew D.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [8] Machine learning-aided design optimization of a mechanical micromixer
    Granados-Ortiz, F-J
    Ortega-Casanova, J.
    [J]. PHYSICS OF FLUIDS, 2021, 33 (06)
  • [9] Machine Learning-Aided Sparse Direction of Arrival Estimation
    Raiguru, Priyadarshini
    Kumar Rout, Susanta
    Sahani, Mrutyunjaya
    Kishore Mishra, Rabindra
    [J]. IEEE Sensors Journal, 2024, 24 (22) : 38125 - 38134
  • [10] Machine learning-aided engineering of hydrolases for PET depolymerization
    Hongyuan Lu
    Daniel J. Diaz
    Natalie J. Czarnecki
    Congzhi Zhu
    Wantae Kim
    Raghav Shroff
    Daniel J. Acosta
    Bradley R. Alexander
    Hannah O. Cole
    Yan Zhang
    Nathaniel A. Lynd
    Andrew D. Ellington
    Hal S. Alper
    [J]. Nature, 2022, 604 : 662 - 667