Machine learning-aided analysis for complex local structure of liquid crystal polymers

被引:0
|
作者
Hideo Doi
Kazuaki Z. Takahashi
Kenji Tagashira
Jun-ichi Fukuda
Takeshi Aoyagi
机构
[1] National Institute of Advanced Industrial Science and Technology (AIST),Research Center for Computational Design of Advanced Functional Materials
[2] Research Association of High-Throughput Design and Development for Advanced Functional Materials,Department of Physics, Faculty of Science
[3] Kyushu University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Elucidation of mesoscopic structures of molecular systems is of considerable scientific and technological interest for the development and optimization of advanced materials. Molecular dynamics simulations are a promising means of revealing macroscopic physical properties of materials from a microscopic viewpoint, but analysis of the resulting complex mesoscopic structures from microscopic information is a non-trivial and challenging task. In this study, a Machine Learning-aided Local Structure Analyzer (ML-LSA) is developed to classify the complex local mesoscopic structures of molecules that have not only simple atomistic group units but also rigid anisotropic functional groups such as mesogens. The proposed ML-LSA is applied to classifying the local structures of liquid crystal polymer (LCP) systems, which are of considerable scientific and technological interest because of their potential for sensors and soft actuators. A machine learning (ML) model is constructed from small, and thus computationally less costly, monodomain LCP trajectories. The ML model can distinguish nematic- and smectic-like monodomain structures with high accuracy. The ML-LSA is applied to large, complex quenched LCP structures, and the complex local structures are successfully classified as either nematic- or smectic-like. Furthermore, the results of the ML-LSA suggest the best order parameter for distinguishing the two mesogenic structures. Our ML model enables automatic and systematic analysis of the mesogenic structures without prior knowledge, and thus can overcome the difficulty of manually determining the specific order parameter required for the classification of complex structures.
引用
收藏
相关论文
共 50 条
  • [1] Machine learning-aided analysis for complex local structure of liquid crystal polymers
    Doi, Hideo
    Takahashi, Kazuaki Z.
    Tagashira, Kenji
    Fukuda, Jun-ichi
    Aoyagi, Takeshi
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [2] Machine Learning-Aided Crystal Facet Rational Design with Ionic Liquid Controllable Synthesis
    Lai, Fuming
    Sun, Zhehao
    Saji, Sandra Elizabeth
    He, Yichuan
    Yu, Xuefeng
    Zhao, Haitao
    Guo, Haibo
    Yin, Zongyou
    SMALL, 2021, 17 (12)
  • [3] Machine Learning-Aided Exploration of Ultrahard Materials
    Tawfik, Sherif Abdulkader
    Nguyen, Phuoc
    Tran, Truyen
    Walsh, Tiffany R.
    Venkatesh, Svetha
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (37): : 15952 - 15961
  • [4] Machine learning-aided generative molecular design
    Du, Yuanqi
    Jamasb, Arian R.
    Guo, Jeff
    Fu, Tianfan
    Harris, Charles
    Wang, Yingheng
    Duan, Chenru
    Lio, Pietro
    Schwaller, Philippe
    Blundell, Tom L.
    NATURE MACHINE INTELLIGENCE, 2024, 6 (06) : 589 - 604
  • [5] Adversarial attacks on machine learning-aided visualizations
    Fujiwara, Takanori
    Kucher, Kostiantyn
    Wang, Junpeng
    Martins, Rafael M.
    Kerren, Andreas
    Ynnerman, Anders
    JOURNAL OF VISUALIZATION, 2025, 28 (01) : 133 - 151
  • [6] Machine learning-aided LiDAR range estimation
    Bastos, Daniel
    Faria, Bruno
    Monteiro, Paulo P.
    Oliveira, Arnaldo S. R.
    Drummond, Miguel, V
    OPTICS LETTERS, 2023, 48 (07) : 1962 - 1965
  • [7] A Review on Machine Learning-Aided Hydrothermal Liquefaction Based on Bibliometric Analysis
    Qian, Lili
    Zhang, Xu
    Ma, Xianguang
    Xue, Peng
    Tang, Xingying
    Li, Xiang
    Wang, Shuang
    ENERGIES, 2024, 17 (21)
  • [8] Machine learning-aided engineering of hydrolases for PET depolymerization
    Lu, Hongyuan
    Diaz, Daniel J.
    Czarnecki, Natalie J.
    Zhu, Congzhi
    Kim, Wantae
    Shroff, Raghav
    Acosta, Daniel J.
    Alexander, Bradley R.
    Cole, Hannah O.
    Zhang, Yan
    Lynd, Nathaniel A.
    Ellington, Andrew D.
    Alper, Hal S.
    NATURE, 2022, 604 (7907) : 662 - +
  • [9] Machine learning-aided design optimization of a mechanical micromixer
    Granados-Ortiz, F-J
    Ortega-Casanova, J.
    PHYSICS OF FLUIDS, 2021, 33 (06)
  • [10] Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme
    d'Oelsnitz, Simon
    Diaz, Daniel J.
    Kim, Wantae
    Acosta, Daniel J.
    Dangerfield, Tyler L.
    Schechter, Mason W.
    Minus, Matthew B.
    Howard, James R.
    Do, Hannah
    Loy, James M.
    Alper, Hal S.
    Zhang, Y. Jessie
    Ellington, Andrew D.
    NATURE COMMUNICATIONS, 2024, 15 (01)