Group classification of projective type second-order ordinary differential equations

被引:0
|
作者
Bagderina Y.Y. [1 ]
机构
[1] Institute of Mathematics with Computer Center, ul. Chernyshevskogo 112, Ufa
关键词
equivalence; group classification; invariant; symmetry; transformation group;
D O I
10.1134/S1990478916010051
中图分类号
学科分类号
摘要
Group classification with respect to admitted point transformation groups is carried out for second-order ordinary differential equations with cubic nonlinearity of the first-order derivative. The result is obtained with use of the invariants of the equivalence transformation group of the family of equations under consideration. The corresponding Riemannian metric is found for the equations that are the projection of the system of geodesics to a two-dimensional surface. © 2016, Pleiades Publishing, Ltd.
引用
收藏
页码:37 / 50
页数:13
相关论文
共 50 条
  • [21] Discretization of second-order ordinary differential equations with symmetries
    Dorodnitsyn, V. A.
    Kaptsov, E. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (08) : 1153 - 1178
  • [22] GEOMETRY OF 2 ORDINARY SECOND-ORDER DIFFERENTIAL EQUATIONS
    STEPANOV, NV
    DOKLADY AKADEMII NAUK SSSR, 1961, 140 (01): : 62 - &
  • [23] ZEROS OF SOLUTIONS OF ORDINARY SECOND-ORDER DIFFERENTIAL EQUATIONS
    COHN, JHE
    QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (77): : 113 - &
  • [24] NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS OF SECOND-ORDER
    HEIDT, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1973, 53 (04): : T198 - T198
  • [25] GENERALIZED SUBMERSIVENESS OF SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS
    Sarlet, W.
    Prince, G. E.
    Crampin, M.
    JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (02): : 209 - 221
  • [26] On first integrals of second-order ordinary differential equations
    Meleshko, S. V.
    Moyo, S.
    Muriel, C.
    Romero, J. L.
    Guha, P.
    Choudhury, A. G.
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 17 - 30
  • [27] Discretization of second-order ordinary differential equations with symmetries
    V. A. Dorodnitsyn
    E. I. Kaptsov
    Computational Mathematics and Mathematical Physics, 2013, 53 : 1153 - 1178
  • [28] ON OSCILLATION OF SECOND-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS
    Lomtatidze, A.
    Sremr, J.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2011, 54 : 69 - 81
  • [29] On the obstruction to linearizability of second-order ordinary differential equations
    Yumaguzhin, VA
    ACTA APPLICANDAE MATHEMATICAE, 2004, 83 (1-2) : 133 - 148
  • [30] The functional formulation of second-order ordinary differential equations
    Chládek P.
    aequationes mathematicae, 2005, 69 (3) : 263 - 270