GENERALIZED SUBMERSIVENESS OF SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

被引:5
|
作者
Sarlet, W. [1 ]
Prince, G. E. [2 ]
Crampin, M. [1 ]
机构
[1] Univ Ghent, Dept Math Phys & Astron, B-9000 Ghent, Belgium
[2] La Trobe Univ, Dept Math & Stat, Melbourne, Vic 3086, Australia
来源
JOURNAL OF GEOMETRIC MECHANICS | 2009年 / 1卷 / 02期
关键词
Second-order differential equations; tangent bundle geometry; integrable distributions; decoupling; GEOMETRIC CHARACTERIZATION; INVERSE PROBLEM; CALCULUS;
D O I
10.3934/jgm.2009.1.209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the notion of submersive second-order differential equations by relaxing the condition that the decoupling stems from the tangent lift of a basic distribution. It is shown that this leads to adapted coordinates in which a number of first-order equations decouple from the remaining second-order ones.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条