Rational homotopy of Leibniz algebras

被引:0
|
作者
Muriel Livernet
机构
[1] Institut de Recherche Mathématique Avancée,
[2] Université Louis Pasteur et CNRS,undefined
[3] 7 rue René-Descartes,undefined
[4] F-67084 Strasbourg Cedex,undefined
[5] France.¶e-mail: livernet@math.u-strasbg.fr,undefined
来源
manuscripta mathematica | 1998年 / 96卷
关键词
Mathematics Subject Classification (1991):55P62, 17A30, 18Gxx;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a non-commutative rational homotopy theory by replacing the pair (Lie algebras, commutative algebras) by the pair (Leibniz algebras, Leibniz-dual algebras). Both pairs are Koszul dual in the sense of operads (Ginzburg–Kapranov). We prove the existence of minimal models and the Hurewicz theorem in this framework. We define Leibniz spheres and prove that their homotopy is periodic.
引用
收藏
页码:295 / 315
页数:20
相关论文
共 50 条
  • [41] On the commutator in Leibniz algebras
    Dzhumadil'daev, A. S.
    Ismailov, N. A.
    Sartayev, B. K.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (04) : 785 - 805
  • [42] On split Leibniz algebras
    Calderon Martin, Antonio J.
    Sanchez Delgado, Jose M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) : 1651 - 1663
  • [43] On the toroidal Leibniz algebras
    Liu, Dong
    Lin, Lei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (02) : 227 - 240
  • [44] On the anticommutativity in Leibniz algebras
    Kurdachenko, Leonid A.
    Semko, Nikolaj N.
    Subbotin, Igor Ya
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (01): : 97 - 109
  • [45] Cohomology of Leibniz Algebras
    Wagemann F.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2023, 125 (4) : 239 - 264
  • [46] Leibniz algebras and graphs
    Barreiro, Elisabete
    Calderon, Antonio J.
    Lopes, Samuel A.
    Sanchez, Jose M.
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (12): : 1994 - 2007
  • [47] On complete Leibniz algebras
    Ayupov, Sh A.
    Khudoyberdiyev, A. Kh
    Shermatova, Z. Kh
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (02) : 265 - 288
  • [48] Quadratic Leibniz Algebras
    Benayadi, Said
    Hidri, Samiha
    JOURNAL OF LIE THEORY, 2014, 24 (03) : 737 - 759
  • [49] On derivations of Leibniz algebras
    Misra, Kailash C.
    Patlertsin, Sutida
    Pongprasert, Suchada
    Rungratgasame, Thitarie
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (07): : 4715 - 4722
  • [50] Binary Leibniz Algebras
    N. A. Ismailov
    A. S. Dzhumadil’daev
    Mathematical Notes, 2021, 110 : 322 - 328