An Extremal Problem For Random Graphs And The Number Of Graphs With Large Even-Girth

被引:0
|
作者
Y. Kohayakawa
B. Kreuter
A. Steger
机构
[1] Instituto de Matemática e Estatística,
[2] Universidade de São Paulo; Rua do Matão 1010,undefined
[3] 05508–900 São Paulo,undefined
[4] Brazil; E-mail: yoshi@ime.usp.br,undefined
[5] Institut für Informatik,undefined
[6] Humboldt Universität zu Berlin; Unter den Linden 6,undefined
[7] 10099 Berlin,undefined
[8] Germany; E-mail: kreuter@informatik.hu-berlin.de,undefined
[9] Institut für Informatik,undefined
[10] Technische Universität München; 80290 München,undefined
[11] Germany; E-mail: steger@informatik.tu-muenchen.de,undefined
来源
Combinatorica | 1998年 / 18卷
关键词
AMS Subject Classification (1991) Classes:  05A16, 05C35, 05C38, 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
2k-free subgraph of a random graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} may have, obtaining best possible results for a range of p=p(n). Our estimates strengthen previous bounds of Füredi [12] and Haxell, Kohayakawa, and Łuczak [13]. Two main tools are used here: the first one is an upper bound for the number of graphs with large even-girth, i.e., graphs without short even cycles, with a given number of vertices and edges, and satisfying a certain additional pseudorandom condition; the second tool is the powerful result of Ajtai, Komlós, Pintz, Spencer, and Szemerédi [1] on uncrowded hypergraphs as given by Duke, Lefmann, and Rödl [7].
引用
收藏
页码:101 / 120
页数:19
相关论文
共 50 条