An Extremal Problem For Random Graphs And The Number Of Graphs With Large Even-Girth

被引:0
|
作者
Y. Kohayakawa
B. Kreuter
A. Steger
机构
[1] Instituto de Matemática e Estatística,
[2] Universidade de São Paulo; Rua do Matão 1010,undefined
[3] 05508–900 São Paulo,undefined
[4] Brazil; E-mail: yoshi@ime.usp.br,undefined
[5] Institut für Informatik,undefined
[6] Humboldt Universität zu Berlin; Unter den Linden 6,undefined
[7] 10099 Berlin,undefined
[8] Germany; E-mail: kreuter@informatik.hu-berlin.de,undefined
[9] Institut für Informatik,undefined
[10] Technische Universität München; 80290 München,undefined
[11] Germany; E-mail: steger@informatik.tu-muenchen.de,undefined
来源
Combinatorica | 1998年 / 18卷
关键词
AMS Subject Classification (1991) Classes:  05A16, 05C35, 05C38, 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
2k-free subgraph of a random graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} may have, obtaining best possible results for a range of p=p(n). Our estimates strengthen previous bounds of Füredi [12] and Haxell, Kohayakawa, and Łuczak [13]. Two main tools are used here: the first one is an upper bound for the number of graphs with large even-girth, i.e., graphs without short even cycles, with a given number of vertices and edges, and satisfying a certain additional pseudorandom condition; the second tool is the powerful result of Ajtai, Komlós, Pintz, Spencer, and Szemerédi [1] on uncrowded hypergraphs as given by Duke, Lefmann, and Rödl [7].
引用
下载
收藏
页码:101 / 120
页数:19
相关论文
共 50 条
  • [31] On the λ′-optimality in graphs with odd girth g and even girth h
    Balbuena, C.
    Garcia-Vazquez, P.
    Montejano, L. P.
    Salas, J.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (07) : 1041 - 1045
  • [32] A stability result for girth-regular graphs with even girth
    Kiss, Gyorgy
    Miklavic, Stefko
    Szonyi, Tamas
    JOURNAL OF GRAPH THEORY, 2022, 100 (01) : 163 - 181
  • [33] PROPERTY A AND GRAPHS WITH LARGE GIRTH
    Willett, Rufus
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2011, 3 (03) : 377 - 384
  • [34] EDGES IN GRAPHS WITH LARGE GIRTH
    DUTTON, RD
    BRIGHAM, RC
    GRAPHS AND COMBINATORICS, 1991, 7 (04) : 315 - 321
  • [35] EXTRACONNECTIVITY OF GRAPHS WITH LARGE GIRTH
    FABREGA, J
    FIOL, MA
    DISCRETE MATHEMATICS, 1994, 127 (1-3) : 163 - 170
  • [36] Minors in graphs of large girth
    Kühn, D
    Osthus, D
    RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (02) : 213 - 225
  • [37] EXTREMAL SUBGRAPHS OF RANDOM GRAPHS
    BABAI, L
    SIMONOVITS, M
    SPENCER, J
    JOURNAL OF GRAPH THEORY, 1990, 14 (05) : 599 - 622
  • [38] On Extremal Subgraphs of Random Graphs
    Brightwell, Graham
    Panagiotou, Konstantinos
    Steger, Angelika
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 477 - +
  • [39] Cayley type graphs and cubic graphs of large girth
    Bray, J
    Parker, C
    Rowley, P
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 113 - 121
  • [40] Extremal subgraphs of random graphs
    Brightwell, Graham
    Panagiotou, Konstantinos
    Steger, Angelika
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (02) : 147 - 178