Modeling of Atmospheric-Pressure Dielectric Barrier Discharges in Argon with Small Admixtures of Tetramethylsilane

被引:0
|
作者
Detlef Loffhagen
Markus M. Becker
Andreas K. Czerny
Claus-Peter Klages
机构
[1] Leibniz Institute for Plasma Science and Technology,Institute for Surface Technology
[2] Technische Universität Braunschweig,Institute of Applied Materials
[3] Karlsruhe Institute of Technology, Applied Material Physics
来源
关键词
Dielectric barrier discharges; Tetramethylsilane; Numerical modeling; Plasma polymerization;
D O I
暂无
中图分类号
学科分类号
摘要
A time-dependent, spatially one-dimensional fluid-Poisson model is applied to analyze the impact of small amounts of tetramethylsilane (TMS) as precursor on the discharge characteristics of an atmospheric-pressure dielectric barrier discharge (DBD) in argon. Based on an established reaction kinetics for argon, it includes a plasma chemistry for TMS, which is validated by measurements of the ignition voltage at the frequency f=86.2kHz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f =86.2\, {\hbox{kHz}}$$\end{document} for TMS amounts of up to 200 ppm. Details of both a reduced Ar-TMS reaction kinetics scheme and an extended plasma-chemistry model involving about 60 species and 580 reactions related to TMS are given. It is found that good agreement between measured and calculated data can be obtained, when assuming that 25% of the reactions of TMS with excited argon atoms with a rate coefficient of 3.0×10-16m3/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.0 \times 10^{-16}\, {\hbox{m}^3/\hbox{s}}$$\end{document} lead to the production of electrons due to Penning ionization. Modeling results for an applied voltage Ua,0=4kV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U}_{{\mathrm{a}},0} = 4\, {\hbox{kV}}$$\end{document} show that TMS is depleted during the residence time of the plasma in the DBD, where the percentage consumption of TMS decreases with increasing TMS fraction because only a finite number of excited argon species is available to dissociate and/or ionize the precursor via energy transfer. Main species resulting from that TMS depletion are presented and discussed. In particular, the analysis clearly indicates that trimethylsilyl cations can be considered to be mainly responsible for the film formation.
引用
收藏
页码:289 / 334
页数:45
相关论文
共 50 条
  • [31] Naphthalene Decomposition by Dielectric Barrier Discharges at Atmospheric Pressure
    Wu, Zuliang
    Wang, Jiaxing
    Han, Jingyi
    Yao, Shuiliang
    Xu, Shaojun
    Martin, Philip
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (01) : 154 - 161
  • [32] Optical diagnostics in dielectric barrier discharges at atmospheric pressure
    Dilecce, Giorgio
    Ambrico, Paolo F.
    De Benedictis, Santolo
    [J]. PURE AND APPLIED CHEMISTRY, 2010, 82 (06) : 1201 - 1207
  • [33] Simulation of breakdown in dielectric barrier discharges at atmospheric pressure
    Wichaidit, C
    Hitchon, WNG
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (18) : 2545 - 2556
  • [34] Atmospheric-pressure plasma by remote dielectric barrier discharges for surface cleaning of large area glass substrates
    Kim D.-J.
    Park J.
    [J]. Plasma Research Express, 2019, 1 (01):
  • [35] Optical Emission Spectroscopy of Argon-Fluorocarbon-Oxygen Fed Atmospheric Pressure Dielectric Barrier Discharges
    Fanelli, Fiorenza
    [J]. PLASMA PROCESSES AND POLYMERS, 2009, 6 (09) : 547 - 554
  • [36] Oil removal from iron surfaces by atmospheric-pressure barrier discharges
    Baravian, G
    Chaleix, D
    Choquet, P
    Nauche, PL
    Puech, V
    Rozoy, M
    [J]. SURFACE & COATINGS TECHNOLOGY, 1999, 115 (01): : 66 - 69
  • [37] PULSED BARRIER DISCHARGES FOR THIN-FILM PRODUCTION AT ATMOSPHERIC-PRESSURE
    REITZ, U
    SALGE, JGH
    SCHWARZ, R
    [J]. SURFACE & COATINGS TECHNOLOGY, 1993, 59 (1-3): : 144 - 147
  • [38] Modeling of Ionization Waves in Atmospheric-Pressure Argon in a Long Gap
    Tereshonok, Dmitry, V
    Babaeva, Natalia Yu
    Naidis, Georgy, V
    Abramov, Artem G.
    Ugryumov, Aleksandr, V
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, 50 (03) : 580 - 586
  • [39] Generation and Electrical Diagnostic of an Atmospheric-Pressure Dielectric Barrier Discharge
    Anghel, Sorin Dan
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (03) : 871 - 876
  • [40] Generation of atmospheric-pressure homogeneous dielectric barrier discharge in air
    Liu, Wenzheng
    Ma, Chuanlong
    Li, Zhiyi
    Wang, Tahan
    Tian, Jia
    [J]. EPL, 2017, 118 (04)