Modeling of Atmospheric-Pressure Dielectric Barrier Discharges in Argon with Small Admixtures of Tetramethylsilane

被引:0
|
作者
Detlef Loffhagen
Markus M. Becker
Andreas K. Czerny
Claus-Peter Klages
机构
[1] Leibniz Institute for Plasma Science and Technology,Institute for Surface Technology
[2] Technische Universität Braunschweig,Institute of Applied Materials
[3] Karlsruhe Institute of Technology, Applied Material Physics
来源
关键词
Dielectric barrier discharges; Tetramethylsilane; Numerical modeling; Plasma polymerization;
D O I
暂无
中图分类号
学科分类号
摘要
A time-dependent, spatially one-dimensional fluid-Poisson model is applied to analyze the impact of small amounts of tetramethylsilane (TMS) as precursor on the discharge characteristics of an atmospheric-pressure dielectric barrier discharge (DBD) in argon. Based on an established reaction kinetics for argon, it includes a plasma chemistry for TMS, which is validated by measurements of the ignition voltage at the frequency f=86.2kHz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f =86.2\, {\hbox{kHz}}$$\end{document} for TMS amounts of up to 200 ppm. Details of both a reduced Ar-TMS reaction kinetics scheme and an extended plasma-chemistry model involving about 60 species and 580 reactions related to TMS are given. It is found that good agreement between measured and calculated data can be obtained, when assuming that 25% of the reactions of TMS with excited argon atoms with a rate coefficient of 3.0×10-16m3/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.0 \times 10^{-16}\, {\hbox{m}^3/\hbox{s}}$$\end{document} lead to the production of electrons due to Penning ionization. Modeling results for an applied voltage Ua,0=4kV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U}_{{\mathrm{a}},0} = 4\, {\hbox{kV}}$$\end{document} show that TMS is depleted during the residence time of the plasma in the DBD, where the percentage consumption of TMS decreases with increasing TMS fraction because only a finite number of excited argon species is available to dissociate and/or ionize the precursor via energy transfer. Main species resulting from that TMS depletion are presented and discussed. In particular, the analysis clearly indicates that trimethylsilyl cations can be considered to be mainly responsible for the film formation.
引用
收藏
页码:289 / 334
页数:45
相关论文
共 50 条
  • [21] Improving uniformity of atmospheric-pressure dielectric barrier discharges using dual frequency excitation
    Liu, Y.
    Peeters, F. J. J.
    Starostin, S. A.
    van de Sanden, M. C. M.
    de Vries, H. W.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (01):
  • [22] Modeling the dielectric barrier micro-discharge in argon at atmospheric pressure
    Saifutdinov, A. I.
    Saifutdinova, A. A.
    Kashapov, N. F.
    [J]. VII CONFERENCE ON LOW TEMPERATURE PLASMA IN THE PROCESSES OF FUNCTIONAL COATING PREPARATION, 2016, 669
  • [23] Characteristics of Atmospheric-Pressure Helium Barrier Pulse Discharges
    Chen, Bo
    Tan, Zhenyu
    Song, Xinxin
    Zhang, Yuantao
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (10) : 1949 - 1957
  • [24] Atmospheric pressure plasma of dielectric barrier discharges
    Chirokov, A
    Gutsol, A
    Fridman, A
    [J]. PURE AND APPLIED CHEMISTRY, 2005, 77 (02) : 487 - 495
  • [25] Study on multi-peak behavior of pulsed dielectric barrier discharges in atmospheric-pressure helium
    Chen, Bo
    Tan, Zhenyu
    Song, Xinxin
    [J]. VACUUM, 2012, 86 (12) : 1992 - 1997
  • [26] Two-dimensional simulation of discharge channels in atmospheric-pressure single dielectric barrier discharges
    Zhang, Jiao
    Wang, Yanhui
    Wang, Dezhen
    [J]. PHYSICS OF PLASMAS, 2015, 22 (11)
  • [27] Generation of Homogeneous Atmospheric-Pressure Dielectric Barrier Discharge in a Large-Gap Argon Gas
    Fang, Zhi
    Shao, Tao
    Ji, Shengchang
    Pan, Jun
    Zhang, Cheng
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (07) : 1884 - 1890
  • [28] Luminous activity of nitrogen and argon afterglows issued from dielectric barrier discharges at atmospheric pressure
    Panousis, Emmanouil
    Clement, Franck
    Lecoq, Elodie
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (04) : 1338 - 1339
  • [29] Observation of Striated Structures in Argon Barrier Discharges at Atmospheric Pressure
    Hoder, Tomas
    Wilke, Christian
    Loffhagen, Detlef
    Brandenburg, Ronny
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2158 - 2159
  • [30] Naphthalene Decomposition by Dielectric Barrier Discharges at Atmospheric Pressure
    Wu, Zuliang
    Wang, Jiaxing
    Han, Jingyi
    Yao, Shuiliang
    Xu, Shaojun
    Martin, Philip
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (01) : 154 - 161