Optimality of logarithmic interpolation inequalities and extension criteria to the Navier–Stokes and Euler equations in Vishik spaces

被引:0
|
作者
Ryo Kanamaru
机构
[1] Waseda University,Department of Pure and Applied MathematicsSchool of Fundamental Science and Engineering
来源
关键词
Vishik space; Logarithmic interpolation inequality; Navier–Stokes equations;
D O I
暂无
中图分类号
学科分类号
摘要
We show the logarithmic interpolation inequality by means of the Vishik space V˙q,σ,θs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}}^{s}_{q,\sigma ,\theta }$$\end{document} which is larger than the homogeneous Besov space B˙q,σs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{B}}^{s}_{q,\sigma }$$\end{document}. We emphasize that V˙q,σ,θs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}}^{s}_{q,\sigma ,\theta }$$\end{document} may be the largest normed space that satisfies the logarithmic interpolation inequality. As an application of this inequality, we prove that the strong solution to the Navier–Stokes and Euler equations can be extended if the scaling invariant quantity of vorticity in the Vishik space is finite. Namely, the Beirão da Veiga- and Beale–Kato–Majda-type regularity criteria are improved in the terms of the Vishik space.
引用
收藏
页码:1381 / 1397
页数:16
相关论文
共 50 条