A fuzzy set approach for generalized CRR model: An empirical analysis of S&P 500 index options

被引:20
|
作者
Lee C.F. [1 ,2 ]
Tzeng G.-H. [3 ,4 ]
Wang S.-Y. [5 ,6 ]
机构
[1] Rutgers Business School, Piscataway, NJ 08854
[2] Institute of Financial Management, National Chiao Tung University, Hsinchu 300
[3] Department of Business Administration, Kainan University, Luchu Shiang, Taoyuan 338
[4] Institute of Management Technology, National Chiao Tung University, Hsinchu 300
[5] Institute of Management Science, National Chiao Tung University, Hsinchu 300
[6] Department of Finance, National Dong Hwa University, Shou-Feng, Hualien 974, 1, Sec. 2, Da-Hsueh Rd.
关键词
A generalized CRR model; Fuzzy binomial OPM; fuzzy set theory; Option pricing model (OPM); Portfolio strategy; Triangular fuzzy number;
D O I
10.1007/s11156-005-4767-1
中图分类号
学科分类号
摘要
This paper applies fuzzy set theory to the Cox, Ross and Rubinstein (CRR) model to set up the fuzzy binomial option pricing model (OPM). The model can provide reasonable ranges of option prices, which many investors can use it for arbitrage or hedge. Because of the CRR model can provide only theoretical reference values for a generalized CRR model in this article we use fuzzy volatility and fuzzy riskless interest rate to replace the corresponding crisp values. In the fuzzy binomial OPM, investors can correct their portfolio strategy according to the right and left value of triangular fuzzy number and they can interpret the optimal difference, according to their individual risk preferences. Finally, in this study an empirical analysis of S&P 500 index options is used to find that the fuzzy binomial OPM is much closer to the reality than the generalized CRR model. © 2005 Springer Science + Business Media, Inc.
引用
收藏
页码:255 / 275
页数:20
相关论文
共 50 条
  • [21] The Tradability Premium on the S&P 500 Index
    Gourieroux, Christian
    Jasiak, Joann
    Xu, Peng
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2016, 14 (03) : 461 - 495
  • [22] The Supply and Demand of S&P 500 Put Options
    Constantinides, George M.
    Lian, Lei
    [J]. CRITICAL FINANCE REVIEW, 2021, 10 (01): : 1 - 20
  • [23] Option-implied risk measures: An empirical examination on the S&P 500 index
    Barone-Adesi, Giovanni
    Legnazzi, Chiara
    Sala, Carlo
    [J]. INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2019, 24 (04) : 1409 - 1428
  • [24] A nonlinear factor analysis of S&P 500 index option returns
    Jones, Christopher S.
    [J]. JOURNAL OF FINANCE, 2006, 61 (05): : 2325 - 2363
  • [25] Bitcoin versus S&P 500 Index: Return and Risk Analysis
    Nzokem, Aubain
    Maposa, Daniel
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (03)
  • [26] Analysis of Firm Risk around S&P 500 Index Changes
    Ivanov, Stoyu I.
    [J]. ECONOMICS BULLETIN, 2012, 32 (02): : 1576 - 1589
  • [27] A constrained cluster-based approach for tracking the S&P 500 index
    Wu, Dexiang
    Kwon, Roy H.
    Costa, Giorgio
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2017, 193 : 222 - 243
  • [28] Is volatility risk priced in the securities market? Evidence from S&P 500 index options
    Arisoy, Yakup Eser
    Salih, Aslihan
    Akdeniz, Levent
    [J]. JOURNAL OF FUTURES MARKETS, 2007, 27 (07) : 617 - 642
  • [30] On profitability of volatility trading on S&P 500 equity index options: The role of trading frictions
    Hong, Hui
    Sung, Hao-Chang
    Yang, Jingjing
    [J]. INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2018, 55 : 295 - 307