A fuzzy set approach for generalized CRR model: An empirical analysis of S&P 500 index options

被引:20
|
作者
Lee C.F. [1 ,2 ]
Tzeng G.-H. [3 ,4 ]
Wang S.-Y. [5 ,6 ]
机构
[1] Rutgers Business School, Piscataway, NJ 08854
[2] Institute of Financial Management, National Chiao Tung University, Hsinchu 300
[3] Department of Business Administration, Kainan University, Luchu Shiang, Taoyuan 338
[4] Institute of Management Technology, National Chiao Tung University, Hsinchu 300
[5] Institute of Management Science, National Chiao Tung University, Hsinchu 300
[6] Department of Finance, National Dong Hwa University, Shou-Feng, Hualien 974, 1, Sec. 2, Da-Hsueh Rd.
关键词
A generalized CRR model; Fuzzy binomial OPM; fuzzy set theory; Option pricing model (OPM); Portfolio strategy; Triangular fuzzy number;
D O I
10.1007/s11156-005-4767-1
中图分类号
学科分类号
摘要
This paper applies fuzzy set theory to the Cox, Ross and Rubinstein (CRR) model to set up the fuzzy binomial option pricing model (OPM). The model can provide reasonable ranges of option prices, which many investors can use it for arbitrage or hedge. Because of the CRR model can provide only theoretical reference values for a generalized CRR model in this article we use fuzzy volatility and fuzzy riskless interest rate to replace the corresponding crisp values. In the fuzzy binomial OPM, investors can correct their portfolio strategy according to the right and left value of triangular fuzzy number and they can interpret the optimal difference, according to their individual risk preferences. Finally, in this study an empirical analysis of S&P 500 index options is used to find that the fuzzy binomial OPM is much closer to the reality than the generalized CRR model. © 2005 Springer Science + Business Media, Inc.
引用
收藏
页码:255 / 275
页数:20
相关论文
共 50 条
  • [11] Bayesian portfolio selection: An empirical analysis of the S&P 500 index 1970-1996
    Polson, NG
    Tew, BV
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2000, 18 (02) : 164 - 173
  • [12] Inclusions in and Exclusions from the S&P 500 Environmental and Socially Responsible Index: A Fuzzy-Set Qualitative Comparative Analysis
    Pineiro-Chousa, Juan
    Romero-Castro, Noelia
    Vizcaino-Gonzalez, Marcos
    [J]. SUSTAINABILITY, 2019, 11 (04)
  • [13] A comparison of neural network model selection strategies for the pricing of S&P 500 stock index options
    Thomaidis, N. S.
    Tzastoudis, V. S.
    Dounias, G. D.
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2007, 16 (06) : 1093 - 1113
  • [14] Time series analysis of S&P 500 index: A horizontal visibility graph approach
    Vamvakaris, Michail D.
    Pantelous, Athanasios A.
    Zuev, Konstantin M.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 497 : 41 - 51
  • [15] An empirical analysis of mean reversion of the S&P 500’s P/E ratios
    Ralf Becker
    Junsoo Lee
    Benton E. Gup
    [J]. Journal of Economics and Finance, 2012, 36 (3) : 675 - 690
  • [16] Improved Implementation of Local Volatility and Its Application to S&P 500 Index Options
    Orosi, Greg
    [J]. JOURNAL OF DERIVATIVES, 2010, 17 (03): : 53 - 64
  • [17] Spider versus S&P index 500
    Woolley, S
    [J]. FORBES, 2002, 170 (01): : 170 - 171
  • [18] Risk aversion, fanning preference and volatility smirk on S&P 500 index options
    Chen, Jian
    Ma, Chenghu
    [J]. APPLIED ECONOMICS, 2016, 48 (35) : 3277 - 3292
  • [19] Beating The S&P 500 Index - A Successful Neural Network Approach
    Sethi, Mininder
    Treleaven, Philip
    Rollin, Sebastian Del Bano
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3074 - 3077
  • [20] Optimal no-arbitrage bounds on S&P 500 index options and the volatility smile
    Dennis, PJ
    [J]. JOURNAL OF FUTURES MARKETS, 2001, 21 (12) : 1151 - 1179