A fuzzy set approach for generalized CRR model: An empirical analysis of S&P 500 index options

被引:20
|
作者
Lee C.F. [1 ,2 ]
Tzeng G.-H. [3 ,4 ]
Wang S.-Y. [5 ,6 ]
机构
[1] Rutgers Business School, Piscataway, NJ 08854
[2] Institute of Financial Management, National Chiao Tung University, Hsinchu 300
[3] Department of Business Administration, Kainan University, Luchu Shiang, Taoyuan 338
[4] Institute of Management Technology, National Chiao Tung University, Hsinchu 300
[5] Institute of Management Science, National Chiao Tung University, Hsinchu 300
[6] Department of Finance, National Dong Hwa University, Shou-Feng, Hualien 974, 1, Sec. 2, Da-Hsueh Rd.
关键词
A generalized CRR model; Fuzzy binomial OPM; fuzzy set theory; Option pricing model (OPM); Portfolio strategy; Triangular fuzzy number;
D O I
10.1007/s11156-005-4767-1
中图分类号
学科分类号
摘要
This paper applies fuzzy set theory to the Cox, Ross and Rubinstein (CRR) model to set up the fuzzy binomial option pricing model (OPM). The model can provide reasonable ranges of option prices, which many investors can use it for arbitrage or hedge. Because of the CRR model can provide only theoretical reference values for a generalized CRR model in this article we use fuzzy volatility and fuzzy riskless interest rate to replace the corresponding crisp values. In the fuzzy binomial OPM, investors can correct their portfolio strategy according to the right and left value of triangular fuzzy number and they can interpret the optimal difference, according to their individual risk preferences. Finally, in this study an empirical analysis of S&P 500 index options is used to find that the fuzzy binomial OPM is much closer to the reality than the generalized CRR model. © 2005 Springer Science + Business Media, Inc.
引用
收藏
页码:255 / 275
页数:20
相关论文
共 50 条
  • [1] Pricing S&P 500 index options with Heston's model
    Zhang, JE
    Shu, JH
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING, PROCEEDINGS, 2003, : 85 - 92
  • [2] THE INFORMATION CONTENT OF THE S&P 500 INDEX AND VIX OPTIONS ON THE DYNAMICS OF THE S&P 500 INDEX
    Chung, San-Lin
    Tsai, Wei-Che
    Wang, Yaw-Huei
    Weng, Pei-Shih
    [J]. JOURNAL OF FUTURES MARKETS, 2011, 31 (12) : 1170 - 1201
  • [3] Mispricing of S&P 500 Index Options
    Constantinides, George M.
    Jackwerth, Jens Carsten
    Perrakis, Stylianos
    [J]. REVIEW OF FINANCIAL STUDIES, 2009, 22 (03): : 1247 - 1277
  • [4] The liquidity effects of revisions to the S&P 500 index: an empirical analysis
    Hegde, SP
    McDermott, JB
    [J]. JOURNAL OF FINANCIAL MARKETS, 2003, 6 (03) : 413 - 459
  • [5] Pricing S&P 500 Index Options: A Conditional Semi-Nonparametric Approach
    Guidolin, Massimo
    Hansen, Erwin
    [J]. JOURNAL OF FUTURES MARKETS, 2016, 36 (03) : 217 - 239
  • [6] Pricing and hedging S&P 500 index options with hermite polynomial approximation: Empirical tests of Madan and Milne's model
    Ane, T
    [J]. JOURNAL OF FUTURES MARKETS, 1999, 19 (07) : 735 - 758
  • [7] Intraday information from S&P 500 Index futures options
    Lim, Kian Guan
    Chen, Ying
    Yap, Nelson K. L.
    [J]. JOURNAL OF FINANCIAL MARKETS, 2019, 42 : 29 - 55
  • [8] Do S&P 500 index options violate the martingale restriction?
    Strong, N
    Xu, XZ
    [J]. JOURNAL OF FUTURES MARKETS, 1999, 19 (05) : 499 - 521
  • [9] The S&P 500 index inclusion effect: Evidence from the options market
    Coakley, Jerry
    Dotsis, George
    Kourtis, Apostolos
    Psychoyios, Dimitris
    [J]. INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2024, 29 (01) : 1157 - 1171
  • [10] Predictable dynamics in the S&P 500 index options implied volatility surface
    Gonçalves, S
    Guidolin, M
    [J]. JOURNAL OF BUSINESS, 2006, 79 (03): : 1591 - 1635