Existence and stability of the relaxation cycle in a mathematical repressilator model

被引:0
|
作者
S. D. Glyzin
A. Yu. Kolesov
N. Kh. Rozov
机构
[1] Demidov Yaroslavl State University,
[2] Lomonosov Moscow State University,undefined
来源
Mathematical Notes | 2017年 / 101卷
关键词
repressilator; genetic oscillator; relaxation cycle; stability; asymptotics;
D O I
暂无
中图分类号
学科分类号
摘要
The three-dimensional nonlinear system of ordinary differential equations modeling the functioning of the simplest oscillatory genetic network, the so-called repressilator, is considered. The existence, asymptotics, and stability of the relaxation periodicmotion in this system are studied.
引用
收藏
页码:71 / 86
页数:15
相关论文
共 50 条
  • [41] Existence and stability analysis of homoclinic cycle and periodic solution of quartic integrate-and-fire neuron model
    Wu J.
    Xu J.
    Wang J.
    Xu Q.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (23): : 209 - 214
  • [42] Globally asymptotical stability and existence of limit cycle for a generalized predator-prey model with prey refuge
    Ma, Zhihui
    Wang, Shufan
    Wang, Tingting
    Qian, Longheng
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2016, 12 (04) : 573 - 586
  • [43] STABILITY ANALYSIS OF A MATHEMATICAL NEURON MODEL
    ROBERGE, FA
    BULLETIN OF MATHEMATICAL BIOPHYSICS, 1967, 29 (02): : 217 - &
  • [44] Transverse Contraction Criteria for Existence, Stability, and Robustness of a Limit Cycle
    Manchester, Ian R.
    Slotine, Jean-Jacques E.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 5909 - 5914
  • [45] STABILITY OF A MATHEMATICAL MODEL OF NEURONE NETWORK
    GELIG, AK
    BIOPHYSICS-USSR, 1968, 13 (02): : 341 - &
  • [46] Transverse contraction criteria for existence, stability, and robustness of a limit cycle
    Manchester, Ian R.
    Slotine, Jean-Jacques E.
    SYSTEMS & CONTROL LETTERS, 2014, 63 : 32 - 38
  • [47] A FUZZY MATHEMATICAL MODEL OF NUCLEAR STABILITY
    Mordeson, John N.
    Wething, Hilary C.
    Clark, Terry D.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2010, 6 (02) : 119 - 140
  • [48] Stability in a mathematical model of neurite elongation
    McLean, Douglas R.
    Graham, Bruce P.
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2006, 23 (02): : 101 - 117
  • [49] Mathematical existence
    Maddy, P
    BULLETIN OF SYMBOLIC LOGIC, 2005, 11 (03) : 351 - 376
  • [50] Stability of a relaxation model with a nonconvex flux
    Liu, HL
    Wang, JH
    Yang, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) : 18 - 29