Existence and stability of the relaxation cycle in a mathematical repressilator model

被引:0
|
作者
S. D. Glyzin
A. Yu. Kolesov
N. Kh. Rozov
机构
[1] Demidov Yaroslavl State University,
[2] Lomonosov Moscow State University,undefined
来源
Mathematical Notes | 2017年 / 101卷
关键词
repressilator; genetic oscillator; relaxation cycle; stability; asymptotics;
D O I
暂无
中图分类号
学科分类号
摘要
The three-dimensional nonlinear system of ordinary differential equations modeling the functioning of the simplest oscillatory genetic network, the so-called repressilator, is considered. The existence, asymptotics, and stability of the relaxation periodicmotion in this system are studied.
引用
收藏
页码:71 / 86
页数:15
相关论文
共 50 条
  • [31] ON A MATHEMATICAL MODEL OF THE CARBON CYCLE IN NATURE
    ERIKSSON, E
    WELANDER, P
    TELLUS, 1956, 8 (02): : 155 - 175
  • [32] A mathematical model for the human menstrual cycle
    Chen, C. Y.
    Ward, J. P.
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2014, 31 (01): : 65 - 86
  • [33] A mathematical model for the cycle of hydride electrodes
    Lei, YQ
    Wang, CS
    Yang, XG
    Pan, HG
    Wu, J
    Wang, QD
    JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 231 (1-2) : 611 - 615
  • [34] Mathematical model of the bovine estrous cycle
    Boer, H. M. T.
    Stoetzel, C.
    Roeblitz, S.
    Deuflhard, P.
    Veerkamp, R. F.
    Woelders, H.
    REPRODUCTION IN DOMESTIC ANIMALS, 2010, 45 : 59 - 59
  • [35] MATHEMATICAL MODEL OF HUMAN MENSTRUAL CYCLE
    SHACK, WJ
    TAM, PY
    LARDNER, TJ
    BIOPHYSICAL JOURNAL, 1971, 11 (10) : 835 - &
  • [36] A Mathematical Model for Personalized Relaxation for Stress Management
    Eid, Mohamad
    Al Osman, Hussein
    El Saddik, Abdulmotaleb
    2013 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS PROCEEDINGS (MEMEA), 2013, : 201 - 206
  • [37] Mathematical aspects of the fluctuating barrier problem. Existence of equilibrium and relaxation solutions
    Pechukas, P
    Ankerhold, J
    CHEMICAL PHYSICS, 1998, 235 (1-3) : 5 - 10
  • [38] Existence of Periodic Solutions to a Class of Environmental Mathematical Model
    Yin, Junyi
    ADVANCES IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-6, 2012, 518-523 : 1540 - 1543
  • [39] Global existence for a mathematical model of the immune response to cancer
    Wei, Xuemei
    Guo, Cuihua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3903 - 3911
  • [40] Mathematical Existence Results for the Doi–Edwards Polymer Model
    Laurent Chupin
    Archive for Rational Mechanics and Analysis, 2017, 223 : 1 - 55