Existence and stability of the relaxation cycle in a mathematical repressilator model

被引:0
|
作者
S. D. Glyzin
A. Yu. Kolesov
N. Kh. Rozov
机构
[1] Demidov Yaroslavl State University,
[2] Lomonosov Moscow State University,undefined
来源
Mathematical Notes | 2017年 / 101卷
关键词
repressilator; genetic oscillator; relaxation cycle; stability; asymptotics;
D O I
暂无
中图分类号
学科分类号
摘要
The three-dimensional nonlinear system of ordinary differential equations modeling the functioning of the simplest oscillatory genetic network, the so-called repressilator, is considered. The existence, asymptotics, and stability of the relaxation periodicmotion in this system are studied.
引用
收藏
页码:71 / 86
页数:15
相关论文
共 50 条
  • [1] Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model
    Glyzin, S. D.
    Kolesov, A. Yu.
    Rozov, N. Kh.
    MATHEMATICAL NOTES, 2017, 101 (1-2) : 71 - 86
  • [2] On the existence of a cycle in an asymmetric model of a molecular repressilator
    Ayupova N.B.
    Golubyatnikov V.P.
    Kazantsev M.V.
    Numerical Analysis and Applications, 2017, 10 (2) : 101 - 107
  • [3] ON A MATHEMATICAL MODEL OF A REPRESSILATOR
    Glyzin, S. D.
    Kolesov, A. Yu.
    Rozov, N. H.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2022, 33 (05) : 797 - 828
  • [4] EXISTENCE OF LIMIT CYCLES IN THE REPRESSILATOR EQUATIONS
    Buse, Olguta
    Kuznetsov, Alexey
    Perez, Rodrigo A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (12): : 4097 - 4106
  • [5] A generalized model of the repressilator
    Stefan Müller
    Josef Hofbauer
    Lukas Endler
    Christoph Flamm
    Stefanie Widder
    Peter Schuster
    Journal of Mathematical Biology, 2006, 53 : 905 - 937
  • [6] A generalized model of the repressilator
    Mueller, Stefan
    Hofbauer, Josef
    Endler, Lukas
    Flamm, Christoph
    Widder, Stefanie
    Schuster, Peter
    JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (06) : 905 - 937
  • [7] EXISTENCE AND STABILITY OF THE RELAXATION TORUS
    KOLESOV, AY
    MISHCHENKO, EF
    RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (03) : 204 - 205
  • [8] EXISTENCE OF SEMIGROUP FOR A MATHEMATICAL CELLULAR MODEL WITH INFINITE CELL CYCLE LENGTH
    Boulanouar, M.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2008, 2 (01): : 13 - 39
  • [9] The existence of a limit cycle in a pollinator-plant-herbivore mathematical model
    Castellanos, Victor
    Sanchez-Garduno, Faustino
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 48 : 212 - 231
  • [10] On the uniqueness of a cycle in an asymmetric three-dimensional model of a molecular repressilator
    Ayupova N.B.
    Golubyatnikov V.P.
    Journal of Applied and Industrial Mathematics, 2014, 8 (2) : 153 - 157