Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials

被引:0
|
作者
Sylvie Corteel
Jim Haglund
Olya Mandelshtam
Sarah Mason
Lauren Williams
机构
[1] UC Berkeley,Department of Mathematics
[2] University of Pennsylvania,Department of Mathematics
[3] University of Waterloo,Department of Combinatorics and Optimization
[4] Wake Forest University,Department of Mathematics
[5] Harvard University,Department of Mathematics
来源
Selecta Mathematica | 2022年 / 28卷
关键词
05E05; 33D52;
D O I
暂无
中图分类号
学科分类号
摘要
We present several new and compact formulas for the modified and integral form of the Macdonald polynomials, building on the compact “multiline queue” formula for Macdonald polynomials due to Corteel, Mandelshtam, and Williams. We also introduce a new quasisymmetric analogue of Macdonald polynomials. These “quasisymmetric Macdonald polynomials" refine the (symmetric) Macdonald polynomials and specialize to the quasisymmetric Schur polynomials defined by Haglund, Luoto, Mason, and van Willigenburg.
引用
收藏
相关论文
共 50 条
  • [1] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials
    Corteel, Sylvie
    Haglund, Jim
    Mandelshtam, Olya
    Mason, Sarah
    Williams, Lauren
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02):
  • [2] Macdonald polynomials and chromatic quasisymmetric functions
    Haglund, James
    Wilson, Andrew Timothy
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 21
  • [3] On combinatorial formulas for Macdonald polynomials
    Lenart, Cristian
    ADVANCES IN MATHEMATICS, 2009, 220 (01) : 324 - 340
  • [4] Factorization formulas for Macdonald polynomials
    Descouensa, Francois
    Morita, Hideaki
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (02) : 395 - 410
  • [5] Rodrigues formulas for the Macdonald polynomials
    Lapointe, L
    Vinet, L
    ADVANCES IN MATHEMATICS, 1997, 130 (02) : 261 - 279
  • [6] TABLEAUX FORMULAS FOR MACDONALD POLYNOMIALS
    Bergeron, Francois
    Haiman, Mark
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (04) : 833 - 852
  • [7] Expanding the quasisymmetric Macdonald polynomials in the fundamental basis
    Corteel, Sylvie
    Mandelshtam, Olya
    Roberts, Austin
    ALGEBRAIC COMBINATORICS, 2023, 6 (04): : 941 - 954
  • [8] Recurrence formulas for Macdonald polynomials of type A
    Lassalle, Michel
    Schlosser, Michael J.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (01) : 113 - 131
  • [9] Recurrence formulas for Macdonald polynomials of type A
    Michel Lassalle
    Michael J. Schlosser
    Journal of Algebraic Combinatorics, 2010, 32 : 113 - 131
  • [10] Combinatorial formula for Macdonald polynomials and generic Macdonald polynomials
    Andrei Okounkov
    Transformation Groups, 2003, 8 : 293 - 305