Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials

被引:0
|
作者
Sylvie Corteel
Jim Haglund
Olya Mandelshtam
Sarah Mason
Lauren Williams
机构
[1] UC Berkeley,Department of Mathematics
[2] University of Pennsylvania,Department of Mathematics
[3] University of Waterloo,Department of Combinatorics and Optimization
[4] Wake Forest University,Department of Mathematics
[5] Harvard University,Department of Mathematics
来源
Selecta Mathematica | 2022年 / 28卷
关键词
05E05; 33D52;
D O I
暂无
中图分类号
学科分类号
摘要
We present several new and compact formulas for the modified and integral form of the Macdonald polynomials, building on the compact “multiline queue” formula for Macdonald polynomials due to Corteel, Mandelshtam, and Williams. We also introduce a new quasisymmetric analogue of Macdonald polynomials. These “quasisymmetric Macdonald polynomials" refine the (symmetric) Macdonald polynomials and specialize to the quasisymmetric Schur polynomials defined by Haglund, Luoto, Mason, and van Willigenburg.
引用
收藏
相关论文
共 50 条
  • [21] On factorization of generalized Macdonald polynomials
    Kononov, Ya.
    Morozov, A.
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (08):
  • [22] Lusztig Varieties and Macdonald Polynomials
    Ram, Arun
    ALGEBRAS AND REPRESENTATION THEORY, 2025,
  • [23] A PROBABILISTIC INTERPRETATION OF THE MACDONALD POLYNOMIALS
    Diaconis, Persi
    Ram, Arun
    ANNALS OF PROBABILITY, 2012, 40 (05): : 1861 - 1896
  • [24] An analytic formula for Macdonald polynomials
    Lassalle, M
    Schlosser, M
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (09) : 569 - 574
  • [25] On form factors and Macdonald polynomials
    Lashkevich, Michael
    Pugai, Yaroslav
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [26] Symmetric and nonsymmetric Macdonald polynomials
    Dan Marshall
    Annals of Combinatorics, 1999, 3 (2-4) : 385 - 415
  • [27] Canonical basis and Macdonald polynomials
    Beck, J
    Frenkel, IB
    Jing, NH
    ADVANCES IN MATHEMATICS, 1998, 140 (01) : 95 - 127
  • [28] A New Generalisation of Macdonald Polynomials
    Alexandr Garbali
    Jan de Gier
    Michael Wheeler
    Communications in Mathematical Physics, 2017, 352 : 773 - 804
  • [29] A combinatorial model for the Macdonald polynomials
    Haglund, J
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (46) : 16127 - 16131
  • [30] Macdonald polynomials and cyclic sieving
    Oh, Jaeseong
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101