Expanding the quasisymmetric Macdonald polynomials in the fundamental basis

被引:0
|
作者
Corteel, Sylvie [1 ]
Mandelshtam, Olya [2 ]
Roberts, Austin [3 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Brown Univ, Dept Math, Providence, RI USA
[3] Highline Coll, Dept Math, Des Moines, WA 98198 USA
来源
ALGEBRAIC COMBINATORICS | 2023年 / 6卷 / 04期
关键词
quasisymmetric Macdonald polynomials; fundamental quasisymmetric functions; tableaux; Macdonald polynomials; quasisymmetric functions; COMBINATORIAL FORMULA;
D O I
10.5802/alco.289
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quasisymmetric Macdonald polynomials G gamma ( X ; q, t ) were recently introduced by the first and second authors with Haglund, Mason, and Williams in [3] to refine the symmetric Macdonald polynomials P lambda (X ; q, t ) with the property that G gamma ( X ; 0,0) equals QS gamma (X ) , the quasisymmetric Schur polynomial of [9]. We derive an expansion for G gamma ( X ; q, t ) in the fundamental basis of quasisymmetric functions.
引用
收藏
页码:941 / 954
页数:15
相关论文
共 50 条
  • [1] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials
    Sylvie Corteel
    Jim Haglund
    Olya Mandelshtam
    Sarah Mason
    Lauren Williams
    Selecta Mathematica, 2022, 28
  • [2] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials
    Corteel, Sylvie
    Haglund, Jim
    Mandelshtam, Olya
    Mason, Sarah
    Williams, Lauren
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02):
  • [3] Macdonald polynomials and chromatic quasisymmetric functions
    Haglund, James
    Wilson, Andrew Timothy
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 21
  • [4] Canonical basis and Macdonald polynomials
    Beck, J
    Frenkel, IB
    Jing, NH
    ADVANCES IN MATHEMATICS, 1998, 140 (01) : 95 - 127
  • [5] Combinatorial formula for Macdonald polynomials and generic Macdonald polynomials
    Andrei Okounkov
    Transformation Groups, 2003, 8 : 293 - 305
  • [7] Fundamental quasisymmetric functions in superspace
    Fishel, Susanna
    Gatica, Jessica
    Lapointe, Luc
    Pinto, Maria Elena
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 125
  • [8] Nonsemisimple Macdonald polynomials
    Cherednik, Ivan
    SELECTA MATHEMATICA-NEW SERIES, 2009, 14 (3-4): : 427 - 569
  • [9] DIFFERENCE SCHRODINGER EQUATION AND QUASISYMMETRIC POLYNOMIALS
    Shabat, A. B.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (02) : 1067 - 1077
  • [10] On generalized Macdonald polynomials
    Mironov, A.
    Morozov, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (01)