A Lower Bound Theorem for Centrally Symmetric Simplicial Polytopes

被引:0
|
作者
Steven Klee
Eran Nevo
Isabella Novik
Hailun Zheng
机构
[1] Seattle University,Department of Mathematics
[2] The Hebrew University of Jerusalem,Einstein Institute of Mathematics
[3] University of Washington,Department of Mathematics
[4] University of Michigan,Department of Mathematics
来源
关键词
Face numbers; Centrally symmetric polytopes; Stacked spheres; Infinitesimal rigidity; Stresses; Missing faces; 05E45; 52B05; 52B15; 52C25;
D O I
暂无
中图分类号
学科分类号
摘要
Stanley proved that for any centrally symmetric simplicial d-polytope P with d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, g2(P)≥d2-d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_2(P) \ge {d \atopwithdelims ()2}-d$$\end{document}. We provide a characterization of centrally symmetric simplicial d-polytopes with d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document} that satisfy this inequality as equality. This gives a natural generalization of the classical Lower Bound Theorem for simplicial polytopes to the setting of centrally symmetric simplicial polytopes.
引用
收藏
页码:541 / 561
页数:20
相关论文
共 50 条
  • [1] A Lower Bound Theorem for Centrally Symmetric Simplicial Polytopes
    Klee, Steven
    Nevo, Eran
    Novik, Isabella
    Zhen, Hailun
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 61 (03) : 541 - 561
  • [2] The lower bound theorem for centrally symmetric simple polytopes
    Novik, I
    MATHEMATIKA, 1999, 46 (92) : 231 - 240
  • [3] Rigidity of symmetric simplicial complexes and the lower bound theorem
    Cruickshank, James
    Jackson, Bill
    Tanigawa, Shin-ichi
    FORUM OF MATHEMATICS SIGMA, 2025, 13
  • [4] BORSUK THEOREM AND THE NUMBER OF FACETS OF CENTRALLY SYMMETRIC POLYTOPES
    BARANY, I
    LOVASZ, L
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1982, 40 (3-4): : 323 - 329
  • [5] Balanced generalized lower bound inequality for simplicial polytopes
    Martina Juhnke-Kubitzke
    Satoshi Murai
    Selecta Mathematica, 2018, 24 : 1677 - 1689
  • [6] GENERALIZED LOWER-BOUND CONJECTURE FOR SIMPLICIAL POLYTOPES
    MCMULLEN, P
    WALKUP, DW
    MATHEMATIKA, 1972, 18 (36) : 264 - &
  • [7] Almost Simplicial Polytopes: The Lower and Upper Bound Theorems
    Nevo, Eran
    Pineda-Villavicencio, Guillermo
    Ugon, Julien
    Yost, David
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (02): : 537 - 556
  • [8] Balanced generalized lower bound inequality for simplicial polytopes
    Juhnke-Kubitzke, Martina
    Murai, Satoshi
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (02): : 1677 - 1689
  • [9] POLYTOPES WITH CENTRALLY SYMMETRIC FACETS
    MCMULLEN, P
    ISRAEL JOURNAL OF MATHEMATICS, 1976, 23 (3-4) : 337 - 338
  • [10] POLYTOPES WITH CENTRALLY SYMMETRIC FACES
    MCMULLEN, P
    ISRAEL JOURNAL OF MATHEMATICS, 1970, 8 (02) : 194 - &