Muon anomalous magnetic moment from effective supersymmetry

被引:0
|
作者
S. Baek
P. Ko
Jae-hyeon Park
机构
[1] School of Physics,
[2] KIAS,undefined
[3] Seoul 130-012,undefined
[4] Korea ,undefined
[5] Department of Physics,undefined
[6] KAIST,undefined
[7] Daejeon 305-701,undefined
[8] Korea ,undefined
来源
The European Physical Journal C - Particles and Fields | 2002年 / 24卷
关键词
Detailed Analysis; Parity Conservation; Measured Deviation; Anomalous Magnetic Moment; Loop Level;
D O I
暂无
中图分类号
学科分类号
摘要
We present a detailed analysis on the possible maximal value of the muon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(g-2)_\mu \equiv 2 a_\mu$\end{document} within the context of effective SUSY models with R parity conservation. First of all, mixing among the second and the third family sleptons can contribute at one loop level to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \rightarrow \mu \gamma$\end{document} simultaneously. One finds that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} can be as large as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(10 $\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 20)\times 10^{-10}$\end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tan\beta$\end{document}, imposing an upper limit on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau\rightarrow \mu \gamma$\end{document} branching ratio. Furthermore, the two loop Barr–Zee type contributions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} may be significant for large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tan\beta$\end{document}, if a stop is light and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_t$\end{document} are large enough (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim O(1)$\end{document} TeV). In this case, it is possible to have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(10) \times 10^{-10}$\end{document} without conflicting with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \rightarrow l \gamma$\end{document}. We conclude that the possible maximal value for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} is about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 20 \times 10^{-10}$\end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tan\beta$\end{document}. Therefore the BNL experiment on the muon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu$\end{document} can exclude the effective SUSY models only if the measured deviation is larger than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 30 \times 10^{-10}$\end{document}.
引用
收藏
页码:613 / 618
页数:5
相关论文
共 50 条
  • [41] Precise Measurement of Anomalous Magnetic Moment of Muon
    Mibe, Tsutomu
    JOURNAL OF COMPUTER CHEMISTRY-JAPAN, 2020, 19 (03) : 64 - 70
  • [42] Precision measurement of the muon anomalous magnetic moment
    Sichtermann, EP
    Brown, HN
    Bunce, G
    Carey, RM
    Cushman, R
    Danby, GT
    Debevec, PT
    Deile, M
    Deng, H
    Deninger, W
    Dhawan, SK
    Druzhinin, VP
    Duong, L
    Efstathiadis, E
    Farley, FJM
    Fedotovich, GV
    Giron, S
    Gray, F
    Grigoriev, D
    Grosse-Perdekamp, M
    Grossmann, A
    Hare, MF
    Hertzog, DW
    Hughes, VW
    Iwasaki, M
    Jungmann, K
    Kawall, D
    Kawamura, M
    Khazin, BI
    Kindem, J
    Krienen, F
    Kronkvist, I
    Larsen, R
    Lee, YY
    Logashenko, I
    McNabb, R
    Meng, W
    Mi, J
    Miller, JP
    Morse, WM
    Orlov, Y
    Özben, CS
    Paley, JM
    Polly, C
    Pretz, J
    Prigl, R
    Putlitz, GZ
    Redin, SI
    Rind, O
    Roberts, BL
    COSMOLOGY AND ELEMENTARY PARTICLE PHYSICS, 2002, 624 : 210 - 219
  • [43] Extra dimensions and the muon anomalous magnetic moment
    Graesser, ML
    PHYSICAL REVIEW D, 2000, 61 (07):
  • [44] Lattice Calculations and the Muon Anomalous Magnetic Moment
    Marina Krstić Marinković
    Few-Body Systems, 2017, 58
  • [45] Muon anomalous magnetic dipole moment in the μνSSM
    张海斌
    刘长鑫
    杨金磊
    冯太傅
    Chinese Physics C, 2022, 46 (09) : 107 - 118
  • [46] The muon anomalous magnetic moment and the pion polarizability
    Engel, Kevin T.
    Ramsey-Musolf, Michael J.
    PHYSICS LETTERS B, 2014, 738 : 123 - 127
  • [47] New physics and the muon anomalous magnetic moment
    THEORY OF THE MUON ANOMALOUS MAGNETIC MOMENT, 2006, 216 : 151 - 170
  • [48] On the theoretical uncertainties in the muon anomalous magnetic moment
    Melnikov, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (28): : 4591 - 4612
  • [49] Noncommutative QED and muon anomalous magnetic moment
    Wang, XJ
    Yan, ML
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (03):
  • [50] The Muon anomalous magnetic moment experiment at Brookhaven
    Semertzidis, YK
    QUANTUM ELECTRODYNAMICS AND PHYSICS OF THE VACUUM, 2001, 564 : 200 - 208