Muon anomalous magnetic moment from effective supersymmetry

被引:0
|
作者
S. Baek
P. Ko
Jae-hyeon Park
机构
[1] School of Physics,
[2] KIAS,undefined
[3] Seoul 130-012,undefined
[4] Korea ,undefined
[5] Department of Physics,undefined
[6] KAIST,undefined
[7] Daejeon 305-701,undefined
[8] Korea ,undefined
来源
The European Physical Journal C - Particles and Fields | 2002年 / 24卷
关键词
Detailed Analysis; Parity Conservation; Measured Deviation; Anomalous Magnetic Moment; Loop Level;
D O I
暂无
中图分类号
学科分类号
摘要
We present a detailed analysis on the possible maximal value of the muon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(g-2)_\mu \equiv 2 a_\mu$\end{document} within the context of effective SUSY models with R parity conservation. First of all, mixing among the second and the third family sleptons can contribute at one loop level to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \rightarrow \mu \gamma$\end{document} simultaneously. One finds that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} can be as large as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(10 $\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 20)\times 10^{-10}$\end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tan\beta$\end{document}, imposing an upper limit on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau\rightarrow \mu \gamma$\end{document} branching ratio. Furthermore, the two loop Barr–Zee type contributions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} may be significant for large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tan\beta$\end{document}, if a stop is light and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_t$\end{document} are large enough (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim O(1)$\end{document} TeV). In this case, it is possible to have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(10) \times 10^{-10}$\end{document} without conflicting with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \rightarrow l \gamma$\end{document}. We conclude that the possible maximal value for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} is about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 20 \times 10^{-10}$\end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tan\beta$\end{document}. Therefore the BNL experiment on the muon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu$\end{document} can exclude the effective SUSY models only if the measured deviation is larger than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 30 \times 10^{-10}$\end{document}.
引用
收藏
页码:613 / 618
页数:5
相关论文
共 50 条
  • [21] THE MUON ANOMALOUS MAGNETIC-MOMENT
    HUGHES, VW
    PHYSICA SCRIPTA, 1988, T22 : 111 - 118
  • [22] A NOTE ON THE ANOMALOUS MAGNETIC MOMENT OF THE MUON
    Palle, Davor
    ACTA PHYSICA POLONICA B, 2016, 47 (05): : 1237 - 1244
  • [23] ANOMALOUS MAGNETIC-MOMENT OF MUON
    FARLEY, FJM
    CONTEMPORARY PHYSICS, 1975, 16 (05) : 413 - 441
  • [24] Minimal muon anomalous magnetic moment
    Carla Biggio
    Marzia Bordone
    Journal of High Energy Physics, 2015
  • [25] Minimal muon anomalous magnetic moment
    Biggio, Carla
    Bordone, Marzia
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02): : 1 - 15
  • [26] Theory of the muon anomalous magnetic moment
    Czarnecki, A
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 123 : 193 - 196
  • [27] On the Contribution of Muon Loops to the Anomalous Magnetic Moment of the Muon
    Sidorov, A., V
    Lashkevich, V., I
    Solovtsova, O. P.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2018, 21 (04): : 395 - 400
  • [28] Limits on supersymmetry masses from the anomalous magnetic moment of leptons
    Syljuasen, O.F.
    Olsen, H.A.
    Physica Scripta, 1993, 48 (05)
  • [29] EFFECTIVE COUPLING-CONSTANT EXPANSION OF MUON ANOMALOUS MAGNETIC-MOMENT
    BARBIERI, R
    REMIDDI, E
    PHYSICS LETTERS B, 1975, 57 (03) : 273 - 276
  • [30] Effective supersymmetric theory and muon anomalous magnetic moment with R parity violation
    Kim, JE
    Kyae, B
    Lee, HM
    PHYSICS LETTERS B, 2001, 520 (3-4) : 298 - 306