Muon anomalous magnetic moment from effective supersymmetry

被引:0
|
作者
S. Baek
P. Ko
Jae-hyeon Park
机构
[1] School of Physics,
[2] KIAS,undefined
[3] Seoul 130-012,undefined
[4] Korea ,undefined
[5] Department of Physics,undefined
[6] KAIST,undefined
[7] Daejeon 305-701,undefined
[8] Korea ,undefined
关键词
Detailed Analysis; Parity Conservation; Measured Deviation; Anomalous Magnetic Moment; Loop Level;
D O I
暂无
中图分类号
学科分类号
摘要
We present a detailed analysis on the possible maximal value of the muon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(g-2)_\mu \equiv 2 a_\mu$\end{document} within the context of effective SUSY models with R parity conservation. First of all, mixing among the second and the third family sleptons can contribute at one loop level to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \rightarrow \mu \gamma$\end{document} simultaneously. One finds that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} can be as large as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(10 $\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 20)\times 10^{-10}$\end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tan\beta$\end{document}, imposing an upper limit on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau\rightarrow \mu \gamma$\end{document} branching ratio. Furthermore, the two loop Barr–Zee type contributions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} may be significant for large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tan\beta$\end{document}, if a stop is light and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_t$\end{document} are large enough (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim O(1)$\end{document} TeV). In this case, it is possible to have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(10) \times 10^{-10}$\end{document} without conflicting with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \rightarrow l \gamma$\end{document}. We conclude that the possible maximal value for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu^{\mathrm{SUSY}}$\end{document} is about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 20 \times 10^{-10}$\end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tan\beta$\end{document}. Therefore the BNL experiment on the muon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_\mu$\end{document} can exclude the effective SUSY models only if the measured deviation is larger than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 30 \times 10^{-10}$\end{document}.
引用
收藏
页码:613 / 618
页数:5
相关论文
共 50 条
  • [1] Muon anomalous magnetic moment from effective supersymmetry
    Baek, S
    Ko, P
    Park, JH
    EUROPEAN PHYSICAL JOURNAL C, 2002, 24 (04): : 613 - 618
  • [2] Supersymmetry and the anomalous anomalous magnetic moment of the muon
    Feng, JL
    Matchev, KT
    PHYSICAL REVIEW LETTERS, 2001, 86 (16) : 3480 - 3483
  • [3] Updated implications of the muon anomalous magnetic moment for supersymmetry
    Byrne, M
    Kolda, C
    Lennon, JE
    PHYSICAL REVIEW D, 2003, 67 (07)
  • [4] Inverted effective supersymmetry with combined Z′ and gravity mediation, and muon anomalous magnetic moment
    Kim, Jihn E.
    PHYSICAL REVIEW D, 2013, 87 (01)
  • [5] Probing the messenger of supersymmetry breaking by the muon anomalous magnetic moment
    Choi, K
    Hwang, K
    Kang, SK
    Lee, KY
    Song, WY
    PHYSICAL REVIEW D, 2001, 64 (05)
  • [6] The muon magnetic moment and supersymmetry
    Stockinger, Dominik
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2007, 34 (02) : R45 - R91
  • [7] The natural explanation of the muon anomalous magnetic moment via the electroweak supersymmetry from the GmSUGRA in the MSSM
    Ahmed, Waqas
    Khan, Imtiaz
    Li, Jinmian
    Li, Tianjun
    Raza, Shabbar
    Zhang, Wenxing
    PHYSICS LETTERS B, 2022, 827
  • [8] Anomalous muon magnetic moment, supersymmetry, naturalness, LHC search limits and the landscape
    Baer, Howard
    Barger, Vernon
    Serce, Hasan
    PHYSICS LETTERS B, 2021, 820
  • [9] Muon anomalous magnetic moment, two-Higgs-doublet model, and supersymmetry
    Cheung, KM
    Chou, CH
    Kong, OCW
    PHYSICAL REVIEW D, 2001, 64 (11)
  • [10] ANOMALOUS MAGNETIC MOMENT OF MUON
    CHARPAK, G
    FARLEY, FJM
    GARWIN, RL
    MULLER, T
    SENS, JC
    ZICHICHI, A
    NUOVO CIMENTO, 1965, 37 (04): : 1241 - +