Pinc and Lipschitz Structures on Products of Manifolds

被引:0
|
作者
Marcin Bobieński
Andrzej Trautman
机构
[1] Warsaw University,Department of Mathematical Methods in Physics
[2] Warsaw University,Institute of Theoretical Physics
来源
关键词
spin; pin; and Lipschitz structures; topological obstructions; structures on products;
D O I
暂无
中图分类号
学科分类号
摘要
The topological condition for the existence of a pincstructure on the product of two Riemannian manifoldsis derived and applied to construct examples of manifolds havingthe weaker Lipschitz structure, but no pinc structure.An example of a five-dimensional manifold with this property is given;it is pointed out that there are no manifolds of lower dimension withthis property.
引用
收藏
页码:291 / 300
页数:9
相关论文
共 50 条
  • [21] Smooth Approximation of Lipschitz Functions on Finsler Manifolds
    Garrido, M. I.
    Jaramillo, J. A.
    Rangel, Y. C.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [22] Smooth approximation of Lipschitz functions on Riemannian manifolds
    Azagra, D.
    Ferrera, J.
    Lopez-Mesas, F.
    Rangel, Y.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 1370 - 1378
  • [23] Harmonic Complex Structures and Special Hermitian Metrics on Products of Sasakian Manifolds
    Andrada, Adrian
    Tolcachier, Alejandro
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (06)
  • [24] HARMONIC COMPLEX STRUCTURES AND SPECIAL HERMITIAN METRICS ON PRODUCTS OF SASAKIAN MANIFOLDS
    Andrada, Adrián
    Tolcachier, Alejandro
    arXiv, 2023,
  • [25] BLASCHKE PRODUCTS IN LIPSCHITZ SPACES
    Jevtic, Miroljub
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 : 689 - 705
  • [26] Boundary layer methods for Lipschitz domains in Riemannian manifolds
    Mitrea, M
    Taylor, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (02) : 181 - 251
  • [27] Well posedness for the Poisson problem on closed Lipschitz manifolds
    Ndjinga, Michael
    Nguemfouo, Marcial
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (05):
  • [28] ε-subgradient algorithms for locally lipschitz functions on Riemannian manifolds
    P. Grohs
    S. Hosseini
    Advances in Computational Mathematics, 2016, 42 : 333 - 360
  • [29] ε-subgradient algorithms for locally lipschitz functions on Riemannian manifolds
    Grohs, P.
    Hosseini, S.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (02) : 333 - 360
  • [30] LIPSCHITZ HOMOTOPY GROUPS OF CONTACT 3-MANIFOLDS
    Perry, Daniel
    REAL ANALYSIS EXCHANGE, 2022, 47 (01) : 75 - 96