Harmonic Complex Structures and Special Hermitian Metrics on Products of Sasakian Manifolds

被引:0
|
作者
Andrada, Adrian [1 ,2 ]
Tolcachier, Alejandro [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, Ave Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba RA-BC, Argentina
[2] CIEM CONICET, Ave Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
关键词
Sasakian manifold; Harmonic almost complex structure; Hermitian metric; Bismut connection; Calabi-Yau with torsion manifold; KAHLER; EXAMPLES; THEOREMS; TORSION;
D O I
10.1007/s12220-024-01620-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the product of two Sasakian manifolds carries a 2-parameter family of Hermitian structures (Ja,b,ga,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(J_{a,b},g_{a,b})$$\end{document}. We show in this article that the complex structure Ja,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{a,b}$$\end{document} is harmonic with respect to ga,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{a,b}$$\end{document}, i.e., it is a critical point of the Dirichlet energy functional. Furthermore, we also determine when these Hermitian structures are locally conformally Kahler, balanced, strong Kahler with torsion, Gauduchon or k-Gauduchon (k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}). Finally, we study the Bismut connection associated to (Ja,b,ga,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(J_{a,b}, g_{a,b})$$\end{document} and we provide formulas for the Bismut-Ricci tensor RicB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ric}}<^>B$$\end{document} and the Bismut-Ricci form rho B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho <^>B$$\end{document}. We show that these tensors vanish if and only if each Sasakian factor is eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein with appropriate constants and we also exhibit some examples fulfilling these conditions, thus providing new examples of Calabi-Yau with torsion manifolds.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] HARMONIC COMPLEX STRUCTURES AND SPECIAL HERMITIAN METRICS ON PRODUCTS OF SASAKIAN MANIFOLDS
    Andrada, Adrián
    Tolcachier, Alejandro
    arXiv, 2023,
  • [2] Complex geometry and Hermitian metrics on the product of two Sasakian manifolds
    Marchidanu, Vlad
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [3] Hermitian structures on the product of Sasakian manifolds
    Lee, Jung Chan
    Park, Jeong Hyeong
    Sekigawa, Kouei
    GEOMETRIAE DEDICATA, 2012, 161 (01) : 399 - 408
  • [4] Hermitian structures on the product of Sasakian manifolds
    Jung Chan Lee
    Jeong Hyeong Park
    Kouei Sekigawa
    Geometriae Dedicata, 2012, 161 : 399 - 408
  • [5] CRITICAL HERMITIAN STRUCTURES ON THE PRODUCT OF SASAKIAN MANIFOLDS
    Lee, Jung Chan
    Park, Jeong Hyeong
    Sekigawa, Kouei
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (07)
  • [6] HOMOGENEOUS HERMITIAN MANIFOLDS AND SPECIAL METRICS
    FABIO PODESTÀ
    Transformation Groups, 2018, 23 : 1129 - 1147
  • [7] HOMOGENEOUS HERMITIAN MANIFOLDS AND SPECIAL METRICS
    Podesta, Fabio
    TRANSFORMATION GROUPS, 2018, 23 (04) : 1129 - 1147
  • [8] Frölicher spectral sequence of compact complex manifolds with special Hermitian metrics
    Latorre, Adela
    Ugarte, Luis
    Villacampa, Raquel
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 66 (03)
  • [9] Special Hermitian metrics on Oeljeklaus-Toma manifolds
    Otiman, Alexandra
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (02) : 655 - 667
  • [10] Harmonic maps on Sasakian manifolds
    Jaiswal, Jai Prakash
    JOURNAL OF GEOMETRY, 2013, 104 (02) : 309 - 315