Harmonic Complex Structures and Special Hermitian Metrics on Products of Sasakian Manifolds

被引:0
|
作者
Andrada, Adrian [1 ,2 ]
Tolcachier, Alejandro [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, Ave Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba RA-BC, Argentina
[2] CIEM CONICET, Ave Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
关键词
Sasakian manifold; Harmonic almost complex structure; Hermitian metric; Bismut connection; Calabi-Yau with torsion manifold; KAHLER; EXAMPLES; THEOREMS; TORSION;
D O I
10.1007/s12220-024-01620-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the product of two Sasakian manifolds carries a 2-parameter family of Hermitian structures (Ja,b,ga,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(J_{a,b},g_{a,b})$$\end{document}. We show in this article that the complex structure Ja,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{a,b}$$\end{document} is harmonic with respect to ga,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{a,b}$$\end{document}, i.e., it is a critical point of the Dirichlet energy functional. Furthermore, we also determine when these Hermitian structures are locally conformally Kahler, balanced, strong Kahler with torsion, Gauduchon or k-Gauduchon (k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}). Finally, we study the Bismut connection associated to (Ja,b,ga,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(J_{a,b}, g_{a,b})$$\end{document} and we provide formulas for the Bismut-Ricci tensor RicB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ric}}<^>B$$\end{document} and the Bismut-Ricci form rho B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho <^>B$$\end{document}. We show that these tensors vanish if and only if each Sasakian factor is eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein with appropriate constants and we also exhibit some examples fulfilling these conditions, thus providing new examples of Calabi-Yau with torsion manifolds.
引用
收藏
页数:42
相关论文
共 50 条
  • [21] HERMITIAN LEFT INVARIANT METRICS ON COMPLEX LIE-GROUPS AND COSYMPLECTIC HERMITIAN-MANIFOLDS
    ABBENA, E
    GRASSI, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5A (03): : 371 - 379
  • [22] Locally Conformal Hermitian Metrics on Complex Non-Kahler Manifolds
    Angella, Daniele
    Ugarte, Luis
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2105 - 2145
  • [23] Hermitian metrics on F-manifolds
    David, Liana
    Hertling, Claus
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 107 : 60 - 78
  • [24] Invariant Complex Structures on 6-Nilmanifolds: Classification, Frolicher Spectral Sequence and Special Hermitian Metrics
    Ceballos, M.
    Otal, A.
    Ugarte, L.
    Villacampa, R.
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 252 - 286
  • [25] Sasakian structures on CR-manifolds
    Liviu Ornea
    Misha Verbitsky
    Geometriae Dedicata, 2007, 125 : 159 - 173
  • [26] Sasakian structures on CR-manifolds
    Ornea, Liviu
    Verbitsky, Misha
    GEOMETRIAE DEDICATA, 2007, 125 (01) : 159 - 173
  • [27] Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds
    Lei Ni
    Mathematische Zeitschrift, 1999, 232 : 331 - 355
  • [28] Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds
    Ni, L
    MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (02) : 331 - 355
  • [29] Nonpositively Curved Almost Hermitian Metrics on Product of Compact Almost Complex Manifolds
    Yu, Chengjie
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (01) : 61 - 70
  • [30] Locally Conformal Hermitian Metrics on Complex Non-Kähler Manifolds
    Daniele Angella
    Luis Ugarte
    Mediterranean Journal of Mathematics, 2016, 13 : 2105 - 2145