Locally Conformal Hermitian Metrics on Complex Non-Kähler Manifolds

被引:0
|
作者
Daniele Angella
Luis Ugarte
机构
[1] Universidad de Zaragoza,Istituto Nazionale di Alta Matematica, Departamento de Matemáticas
[2] Collegio Puteano,I.U.M.A
[3] Scuola Normale Superiore,Centro di Ricerca Matematica “Ennio de Giorgi”
[4] Universidad de Zaragoza,Departamento de Matemáticas
来源
关键词
32Q99; 53C55; 53C30; Complex manifold; locally conformal Kähler; balanced metric; locally conformal balanced; holomorphic-tamed; -Lemma; nilmanifold; solvmanifold;
D O I
暂无
中图分类号
学科分类号
摘要
We study complex non-Kähler manifolds with Hermitian metrics being locally conformal to metrics with special cohomological properties. In particular, we provide examples where the existence of locally conformal holomorphic-tamed structures implies the existence of locally conformal Kähler metrics, too.
引用
收藏
页码:2105 / 2145
页数:40
相关论文
共 50 条
  • [1] Locally Conformal Hermitian Metrics on Complex Non-Kahler Manifolds
    Angella, Daniele
    Ugarte, Luis
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2105 - 2145
  • [2] Locally Conformal K?hler and Hermitian Yang-Mills Metrics
    Jieming YANG
    Chinese Annals of Mathematics,Series B, 2021, (04) : 511 - 518
  • [3] Locally Conformal Kähler and Hermitian Yang-Mills Metrics
    Jieming Yang
    Chinese Annals of Mathematics, Series B, 2021, 42 : 511 - 518
  • [4] Special non-Kähler metrics on Endo-Pajitnov manifolds
    Ciulica, Cristian
    Otiman, Alexandra
    Stanciu, Miron
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024,
  • [5] Locally conformally Kähler metrics on certain non-Kählerian surfaces
    Marco Brunella
    Mathematische Annalen, 2010, 346 : 629 - 639
  • [6] Eigenvalues of the complex Laplacian on compact non-Kähler manifolds
    Gabriel J. H. Khan
    Annals of Global Analysis and Geometry, 2018, 53 : 233 - 249
  • [7] COMPATIBILITY BETWEEN NON-KÄHLER STRUCTURES ON COMPLEX (NIL)MANIFOLDS
    L. ORNEA
    A.-I. OTIMAN
    M. STANCIU
    Transformation Groups, 2023, 28 : 1669 - 1686
  • [8] A Liouville theorem on complete non-Kähler manifolds
    Yuang Li
    Chuanjing Zhang
    Xi Zhang
    Annals of Global Analysis and Geometry, 2019, 55 : 623 - 629
  • [9] Locally conformal Kähler manifolds with potential
    Liviu Ornea
    Misha Verbitsky
    Mathematische Annalen, 2010, 348 : 25 - 33
  • [10] Quaternionic Kähler manifolds with Hermitian and Norden metrics
    Mancho Manev
    Journal of Geometry, 2012, 103 (3) : 519 - 530