Locally Conformal Hermitian Metrics on Complex Non-Kähler Manifolds

被引:0
|
作者
Daniele Angella
Luis Ugarte
机构
[1] Universidad de Zaragoza,Istituto Nazionale di Alta Matematica, Departamento de Matemáticas
[2] Collegio Puteano,I.U.M.A
[3] Scuola Normale Superiore,Centro di Ricerca Matematica “Ennio de Giorgi”
[4] Universidad de Zaragoza,Departamento de Matemáticas
来源
关键词
32Q99; 53C55; 53C30; Complex manifold; locally conformal Kähler; balanced metric; locally conformal balanced; holomorphic-tamed; -Lemma; nilmanifold; solvmanifold;
D O I
暂无
中图分类号
学科分类号
摘要
We study complex non-Kähler manifolds with Hermitian metrics being locally conformal to metrics with special cohomological properties. In particular, we provide examples where the existence of locally conformal holomorphic-tamed structures implies the existence of locally conformal Kähler metrics, too.
引用
收藏
页码:2105 / 2145
页数:40
相关论文
共 50 条
  • [41] Stable Bundles on Non-Kähler Elliptic Surfaces
    Vasile Brînzănescu
    Ruxandra Moraru
    Communications in Mathematical Physics, 2005, 254 : 565 - 580
  • [42] Extremal K?hler Metrics of Toric Manifolds
    An-Min LI
    Li SHENG
    ChineseAnnalsofMathematics,SeriesB, 2023, (06) : 827 - 836
  • [43] Examples of non-Kähler Hamiltonian torus actions
    Susan Tolman
    Inventiones mathematicae, 1998, 131 : 299 - 310
  • [44] Hyper-Hermitian Quaternionic Kähler Manifolds
    Bogdan Alexandrov
    Annals of Global Analysis and Geometry, 2002, 22 : 75 - 98
  • [45] The Hermitian Laplace Operator on Nearly Kähler Manifolds
    Andrei Moroianu
    Uwe Semmelmann
    Communications in Mathematical Physics, 2010, 294 : 251 - 272
  • [46] Some recent progress in non-Kähler geometry
    Fangyang Zheng
    Science China Mathematics, 2019, 62 : 2423 - 2434
  • [47] Note on Locally Conformal Kähler Surfaces
    Yoshinobu Kamishima
    Geometriae Dedicata, 2001, 84 : 115 - 124
  • [48] Non-linear Hopf Manifolds are Locally Conformally Kähler
    Liviu Ornea
    Misha Verbitsky
    The Journal of Geometric Analysis, 2023, 33
  • [49] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [50] Some recent progress in non-K?hler geometry
    Fangyang Zheng
    Science China(Mathematics), 2019, 62 (11) : 2423 - 2434