Homogenization of Coupled Fast-Slow Systems via Intermediate Stochastic Regularization

被引:0
|
作者
Maximilian Engel
Marios Antonios Gkogkas
Christian Kuehn
机构
[1] Freie Universität Berlin,Department of Mathematics
[2] Technical University of Munich,Faculty of Mathematics
来源
关键词
Deterministic homogenization; Coupled systems; Diffusion limit; Zero-noise limit; 34E13; 35J47; 37A50; 60F17; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study coupled fast-slow ordinary differential equations (ODEs) with small time scale separation parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} such that, for every fixed value of the slow variable, the fast dynamics are sufficiently chaotic with ergodic invariant measure. Convergence of the slow process to the solution of a homogenized stochastic differential equation (SDE) in the limit ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} to zero, with explicit formulas for drift and diffusion coefficients, has so far only been obtained for the case that the fast dynamics evolve independently. In this paper we give sufficient conditions for the convergence of the first moments of the slow variable in the coupled case. Our proof is based upon a new method of stochastic regularization and functional-analytical techniques combined via a double limit procedure involving a zero-noise limit as well as considering ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} to zero. We also give exact formulas for the drift and diffusion coefficients for the limiting SDE. As a main application of our theory, we study weakly-coupled systems, where the coupling only occurs in lower time scales.
引用
收藏
相关论文
共 50 条
  • [41] Symmetry-breaking rhythms in coupled, identical fast-slow oscillators
    Awal, Naziru M.
    Epstein, Irving R.
    Kaper, Tasso J.
    Vo, Theodore
    CHAOS, 2023, 33 (01)
  • [42] KURAMOTO OSCILLATORS WITH INERTIA: A FAST-SLOW DYNAMICAL SYSTEMS APPROACH
    Choi, Young-Pil
    Ha, Seung-Yeal
    Jung, Sungeun
    Slemrod, Marshall
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (03) : 467 - 482
  • [43] Coarse-graining via EDP-convergence for linear fast-slow reaction systems
    Mielke, Alexander
    Stephan, Artur
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (09): : 1765 - 1807
  • [44] Generalized Play Hysteresis Operators in Limits of Fast-Slow Systems
    Kuehn, Christian
    Muench, Christian
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (03): : 1650 - 1685
  • [45] FURTHER COMMENTS ON ACCIDENTAL COINCIDENCES IN FAST-SLOW COINCIDENCE SYSTEMS
    SHERA, EB
    NUCLEAR INSTRUMENTS & METHODS, 1961, 12 (01): : 198 - 198
  • [46] Fast-slow vector fields of reaction-diffusion systems
    Bykov, V.
    Cherkinsky, Y.
    Gol'dshtein, V.
    Krapivnik, N.
    Maas, U.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2020, 85 (01) : 67 - 86
  • [47] Towards sample path estimates for fast-slow stochastic partial differential equations
    Gnann, Manuel, V
    Kuehn, Christian
    Pein, Anne
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (05) : 1004 - 1024
  • [48] A WIDEBAND DIRECT-COUPLED AMPLIFIER UTILIZING A FAST-SLOW LOOP CONCEPT
    RENNER, KW
    BEDWELL, MO
    PIERCE, JF
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1981, 28 (01) : 584 - 589
  • [49] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
    Gao, Xiang
    Chen, Diyi
    Zhang, Hao
    Xu, Beibei
    Wang, Xiangyu
    CHINESE PHYSICS B, 2018, 27 (12)
  • [50] A fast-slow dynamical systems theory for the Kuramoto type phase model
    Ha, Seung-Yeal
    Slemrod, Marshall
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (10) : 2685 - 2695