Homogenization of Coupled Fast-Slow Systems via Intermediate Stochastic Regularization

被引:0
|
作者
Maximilian Engel
Marios Antonios Gkogkas
Christian Kuehn
机构
[1] Freie Universität Berlin,Department of Mathematics
[2] Technical University of Munich,Faculty of Mathematics
来源
关键词
Deterministic homogenization; Coupled systems; Diffusion limit; Zero-noise limit; 34E13; 35J47; 37A50; 60F17; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study coupled fast-slow ordinary differential equations (ODEs) with small time scale separation parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} such that, for every fixed value of the slow variable, the fast dynamics are sufficiently chaotic with ergodic invariant measure. Convergence of the slow process to the solution of a homogenized stochastic differential equation (SDE) in the limit ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} to zero, with explicit formulas for drift and diffusion coefficients, has so far only been obtained for the case that the fast dynamics evolve independently. In this paper we give sufficient conditions for the convergence of the first moments of the slow variable in the coupled case. Our proof is based upon a new method of stochastic regularization and functional-analytical techniques combined via a double limit procedure involving a zero-noise limit as well as considering ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} to zero. We also give exact formulas for the drift and diffusion coefficients for the limiting SDE. As a main application of our theory, we study weakly-coupled systems, where the coupling only occurs in lower time scales.
引用
收藏
相关论文
共 50 条
  • [21] Slow manifolds for a nonlocal fast-slow stochastic system with stable Levy noise
    Zulfiqar, Hina
    Yuan, Shenglan
    He, Ziying
    Duan, Jinqiao
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [22] A geometric analysis of fast-slow models for stochastic gene expression
    Nikola Popović
    Carsten Marr
    Peter S. Swain
    Journal of Mathematical Biology, 2016, 72 : 87 - 122
  • [23] A geometric analysis of fast-slow models for stochastic gene expression
    Popovic, Nikola
    Marr, Carsten
    Swain, Peter S.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 72 (1-2) : 87 - 122
  • [24] Fast-slow diffusion systems with nonlinear boundary conditions
    Wang, MX
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (06) : 893 - 908
  • [25] The Conley index for fast-slow systems II: Multidimensional slow variable
    Gedeon, T
    Kokubu, H
    Mischaikow, K
    Oka, H
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 225 (01) : 242 - 307
  • [26] An unfolding theory approach to bursting in fast-slow systems
    Golubitsky, M
    Josic, K
    Kaper, TJ
    GLOBAL ANALYSIS OF DYNAMICAL SYSTEMS: FESTSCHRIFT DEDICATED TO FLORIS TAKENS FOR HIS 60TH BIRTHDAY, 2001, : 277 - 308
  • [27] Embedding phase reduction for fast-slow systems with noise-induced stochastic quasiperiodic orbits
    Zhu, Jinjie
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 465
  • [28] ANALYSIS OF CHANCE COINCIDENCES IN FAST-SLOW COINCIDENCE SYSTEMS
    SHERA, EB
    CASPER, KJ
    ROBINSON, BL
    NUCLEAR INSTRUMENTS & METHODS, 1963, 24 (05): : 482 - 492
  • [29] Discretized Fast-Slow Systems with Canards in Two Dimensions
    Engel, Maximilian
    Kuehn, Christian
    Petrera, Matteo
    Suris, Yuri
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (02)
  • [30] Fluctuations in the heterogeneous multiscale methods for fast-slow systems
    Kelly, David
    Vanden-Eijnden, Eric
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2017, 4