Homogenization of Coupled Fast-Slow Systems via Intermediate Stochastic Regularization

被引:0
|
作者
Maximilian Engel
Marios Antonios Gkogkas
Christian Kuehn
机构
[1] Freie Universität Berlin,Department of Mathematics
[2] Technical University of Munich,Faculty of Mathematics
来源
关键词
Deterministic homogenization; Coupled systems; Diffusion limit; Zero-noise limit; 34E13; 35J47; 37A50; 60F17; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study coupled fast-slow ordinary differential equations (ODEs) with small time scale separation parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} such that, for every fixed value of the slow variable, the fast dynamics are sufficiently chaotic with ergodic invariant measure. Convergence of the slow process to the solution of a homogenized stochastic differential equation (SDE) in the limit ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} to zero, with explicit formulas for drift and diffusion coefficients, has so far only been obtained for the case that the fast dynamics evolve independently. In this paper we give sufficient conditions for the convergence of the first moments of the slow variable in the coupled case. Our proof is based upon a new method of stochastic regularization and functional-analytical techniques combined via a double limit procedure involving a zero-noise limit as well as considering ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} to zero. We also give exact formulas for the drift and diffusion coefficients for the limiting SDE. As a main application of our theory, we study weakly-coupled systems, where the coupling only occurs in lower time scales.
引用
收藏
相关论文
共 50 条
  • [1] Homogenization of Coupled Fast-Slow Systems via Intermediate Stochastic Regularization
    Engel, Maximilian
    Gkogkas, Marios Antonios
    Kuehn, Christian
    JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (02)
  • [2] SECOND-ORDER FAST-SLOW STOCHASTIC SYSTEMS
    Nguyen, Nhu N.
    Yin, George
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (04) : 5175 - 5208
  • [3] An Analysis of Fast-Slow Systems
    Nye, V. A.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1985, 2 (04) : 295 - 317
  • [4] Averaging principle for a stochastic coupled fast-slow atmosphere-ocean model
    Gao, Hongjun
    Shi, Yangyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 298 : 248 - 297
  • [5] Uncertainty transformation via Hopf bifurcation in fast-slow systems
    Kuehn, Christian
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2200):
  • [6] Stochastic periodic orbits in fast-slow systems with self-induced stochastic resonance
    Zhu, Jinjie
    Nakao, Hiroya
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [7] Large Deviations in Fast-Slow Systems
    Bouchet, Freddy
    Grafke, Tobias
    Tangarife, Tomas
    Vanden-Eijnden, Eric
    JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (04) : 793 - 812
  • [10] Deterministic homogenization under optimal moment assumptions for fast-slow systems. Part 2
    Chevyrev, Ilya
    Friz, Peter
    Korepanov, Alexey
    Melbourne, Ian
    Zhang, Huilin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1328 - 1350