Bipartite Q-Polynomial Distance-Regular Graphs

被引:0
|
作者
John S. Caughman IV
机构
[1] Portland State University,Department of Mathematical Sciences
来源
Graphs and Combinatorics | 2004年 / 20卷
关键词
Intersection Number; Terwilliger Algebra; Antipodal Quotient;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ denote a bipartite distance-regular graph with diameter D≥12. We show Γ is Q-polynomial if and only if one of the following (i)–(iv) holds: (i) Γ is the ordinary 2D-cycle. (ii) Γ is the Hamming cube H(D,2). (iii) Γ is the antipodal quotient of H(2D,2). (iv) The intersection numbers of Γ satisfy [inline-graphic not available: see fulltext] where q is an integer at least 2. We obtain the above result using the Terwilliger algebra of Γ.
引用
收藏
页码:47 / 57
页数:10
相关论文
共 50 条