Bipartite Q-Polynomial Distance-Regular Graphs

被引:0
|
作者
John S. Caughman IV
机构
[1] Portland State University,Department of Mathematical Sciences
来源
Graphs and Combinatorics | 2004年 / 20卷
关键词
Intersection Number; Terwilliger Algebra; Antipodal Quotient;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ denote a bipartite distance-regular graph with diameter D≥12. We show Γ is Q-polynomial if and only if one of the following (i)–(iv) holds: (i) Γ is the ordinary 2D-cycle. (ii) Γ is the Hamming cube H(D,2). (iii) Γ is the antipodal quotient of H(2D,2). (iv) The intersection numbers of Γ satisfy [inline-graphic not available: see fulltext] where q is an integer at least 2. We obtain the above result using the Terwilliger algebra of Γ.
引用
收藏
页码:47 / 57
页数:10
相关论文
共 50 条
  • [21] Tight Distance-Regular Graphs and the Q-Polynomial Property
    Arlene A. Pascasio
    Graphs and Combinatorics, 2001, 17 : 149 - 169
  • [22] Tight distance-regular graphs and the Q-polynomial property
    Pascasio, AA
    GRAPHS AND COMBINATORICS, 2001, 17 (01) : 149 - 169
  • [23] The last subconstituent of a bipartite Q-polynomial distance-regular graph
    Caughman, JS
    EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (05) : 459 - 470
  • [24] Nonexistence of certain Q-polynomial distance-regular graphs
    Makhnev, A. A.
    Golubyatnikov, M. P.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (04): : 136 - 141
  • [25] Twice Q-polynomial distance-regular graphs of diameter 4
    Ma JianMin
    Koolen, Jack H.
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (12) : 2683 - 2690
  • [26] ON Q-POLYNOMIAL DISTANCE-REGULAR GRAPHS Γ WITH STRONGLY REGULAR GRAPHS Γ2 AND Γ3
    Belousov, Ivan Nikolaevich
    Makhnev, Aleksandr Alekseevich
    Nirova, Marina Sefovna
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1385 - 1392
  • [27] Q-polynomial distance-regular graphs with a1=0
    Miklavic, T
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) : 911 - 920
  • [28] Twice Q-polynomial distance-regular graphs of diameter 4
    MA JianMin
    KOOLEN Jack H.
    ScienceChina(Mathematics), 2015, 58 (12) : 2683 - 2690
  • [29] Twice Q-polynomial distance-regular graphs of diameter 4
    JianMin Ma
    Jack H. Koolen
    Science China Mathematics, 2015, 58 : 2683 - 2690
  • [30] Triple intersection numbers of Q-polynomial distance-regular graphs
    Urlep, Matjaz
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (06) : 1246 - 1252