Domain engineering of Saccharomyces cerevisiae exoglucanases

被引:0
|
作者
S. B. Gundllapalli. Moses
R. R. Cordero. Otero
I. S. Pretorius
机构
[1] Stellenbosch University,Institute for Wine Biotechnology and Department of Viticulture & Oenology
[2] The Australian Wine Research Institute,undefined
来源
Biotechnology Letters | 2005年 / 27卷
关键词
cellulose-binding domain; cellulose hydrolysis; exoglucanases;
D O I
暂无
中图分类号
学科分类号
摘要
To illustrate the effect of a cellulose-binding domain (CBD) on the enzymatic characteristics of non-cellulolytic exoglucanases, 10 different recombinant enzymes were constructed combining the Saccharomyces cerevisiae exoglucanases, EXG1 and SSG1, with the CBD2 from the Trichoderma reesei cellobiohydrolase, CBH2, and a linker peptide. The enzymatic activity of the recombinant enzymes increased with the CBD copy number. The recombinant enzymes, CBD2-CBD2-L-EXG1 and CBD2-CBD2-SSG1, exhibited the highest cellobiohydrolase activity (17.5 and 16.3 U mg −1 respectively) on Avicel cellulose, which is approximately 1.5- to 2-fold higher than the native enzymes. The molecular organisation of CBD in these recombinant enzymes enhanced substrate affinity, molecular flexibility and synergistic activity, contributing to their elevated action on the recalcitrant substrates as characterised by adsorption, kinetics, thermostability and scanning electron microscopic analysis.
引用
收藏
页码:355 / 362
页数:7
相关论文
共 50 条
  • [31] Metabolic engineering for pentose utilization in Saccharomyces cerevisiae
    Hahn-Haegerdal, Bdrbel
    Karhumaa, Kaisa
    Jeppsson, Marie
    Gorwa-Grauslund, Marie F.
    BIOFUELS, 2007, 108 : 147 - 177
  • [32] Engineering of Saccharomyces cerevisiae for enhanced polyketide production
    Choi, Jin Wook
    Da Silva, Nancy A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [33] Engineering Saccharomyces cerevisiae for production of the capsaicinoid nonivamide
    Muratovska, Nina
    Grey, Carl
    Carlquist, Magnus
    MICROBIAL CELL FACTORIES, 2022, 21 (01)
  • [34] Metabolic engineering of Saccharomyces cerevisiae for chelerythrine biosynthesis
    Zhu, Jiawei
    Zhang, Kai
    He, Yuanzhi
    Zhang, Qi
    Ran, Yanpeng
    Tan, Zaigao
    Cui, Li
    Feng, Yan
    MICROBIAL CELL FACTORIES, 2024, 23 (01)
  • [35] Promoter Architecture and Promoter Engineering in Saccharomyces cerevisiae
    Tang, Hongting
    Wu, Yanling
    Deng, Jiliang
    Chen, Nanzhu
    Zheng, Zhaohui
    Wei, Yongjun
    Luo, Xiaozhou
    Keasling, Jay D.
    METABOLITES, 2020, 10 (08) : 1 - 20
  • [36] Molecular tools for pathway engineering in Saccharomyces cerevisiae
    Besada-Lombana, Pamela B.
    McTaggart, Tami L.
    Da Silva, Nancy A.
    CURRENT OPINION IN BIOTECHNOLOGY, 2018, 53 : 39 - 49
  • [37] Metabolic engineering of Saccharomyces cerevisiae for linalool production
    Pegah Amiri
    Azar Shahpiri
    Mohammad Ali Asadollahi
    Fariborz Momenbeik
    Siavash Partow
    Biotechnology Letters, 2016, 38 : 503 - 508
  • [38] Transportome-wide engineering of Saccharomyces cerevisiae
    Wang, Guokun
    Møller-Hansen, Iben
    Babaei, Mahsa
    D'Ambrosio, Vasil
    Christensen, Hanne Bjerre
    Darbani, Behrooz
    Jensen, Michael Krogh
    Borodina, Irina
    Metabolic Engineering, 2021, 64 : 52 - 63
  • [39] Engineering Saccharomyces cerevisiae for Efficient Liquiritigenin Production
    Deng, Hanning
    Li, Hongbiao
    Li, Shan
    Zhou, Jingwen
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2025, 73 (08) : 4787 - 4796