Engineering and standardization of posttranscriptional biocircuitry in Saccharomyces cerevisiae

被引:1
|
作者
McCarthy, John [1 ,2 ]
机构
[1] Univ Warwick, Warwick Integrat Synthet Biol Ctr WISB, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England
基金
英国生物技术与生命科学研究理事会; 欧盟地平线“2020”;
关键词
engineering circuitry; RNA; proteins; chemical ligands; yeast; CONTROLLING GENE-EXPRESSION; RNA-BINDING PROTEINS; SYNTHETIC BIOLOGY; MESSENGER-RNA; TRANSLATIONAL REPRESSION; YEAST; TRANSCRIPTION; DESIGN; SYSTEM; DEGRON;
D O I
10.1093/intbio/zyab013
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
This short review considers to what extent posttranscriptional steps of gene expression can provide the basis for novel control mechanisms and procedures in synthetic biology and biotechnology. The term biocircuitry is used here to refer to functionally connected components comprising DNA, RNA or proteins. The review begins with an overview of the diversity of devices being developed and then considers the challenges presented by trying to engineer more scaled-up systems. While the engineering of RNA-based and protein-based circuitry poses new challenges, the resulting 'toolsets' of components and novel mechanisms of operation will open up multiple new opportunities for synthetic biology. However, agreed procedures for standardization will need to be placed at the heart of this expanding field if the full potential benefits are to be realized.
引用
收藏
页码:210 / 220
页数:11
相关论文
共 50 条
  • [1] Posttranscriptional regulation of the glycerophosphoinositol/glycerophosphocholine transporter of Saccharomyces cerevisiae
    Patton-Vogt, J
    Almaguer, C
    FASEB JOURNAL, 2006, 20 (05): : A952 - A952
  • [3] Metabolic engineering of Saccharomyces cerevisiae
    Ostergaard, S
    Olsson, L
    Nielsen, J
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2000, 64 (01) : 34 - +
  • [4] POSTTRANSCRIPTIONAL HEME CONTROL OF CATALASE SYNTHESIS IN THE YEAST SACCHAROMYCES-CEREVISIAE
    SLEDZIEWSKI, A
    RYTKA, J
    BILINSKI, T
    HORTNER, H
    RUIS, H
    CURRENT GENETICS, 1981, 4 (01) : 19 - 23
  • [5] Engineering Saccharomyces cerevisiae for xylose utilization
    Pronk, J
    Kuyper, M
    Toirkens, M
    Winkler, R
    van Dijken, H
    de Laat, W
    JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S86 - S87
  • [6] Metabolic engineering of Saccharomyces cerevisiae chassis
    Zhang, Yunfeng
    He, Dan
    Lu, Huan
    Huang, Jiandong
    Luo, Xiaozhou
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (03): : 310 - 318
  • [7] Evolutionary engineering of osmotolerant Saccharomyces cerevisiae
    Aloglu, T
    Tamerler, C
    Sauer, U
    Çakar, ZP
    JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S9 - S9
  • [8] Domain engineering of Saccharomyces cerevisiae exoglucanases
    S. B. Gundllapalli. Moses
    R. R. Cordero. Otero
    I. S. Pretorius
    Biotechnology Letters, 2005, 27 : 355 - 362
  • [9] Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae
    Lijin Duan
    Wentao Ding
    Xiaonan Liu
    Xiaozhi Cheng
    Jing Cai
    Erbing Hua
    Huifeng Jiang
    Microbial Cell Factories, 16
  • [10] Engineering of Saccharomyces cerevisiae for the production of (+)-ambrein
    Moser, Sandra
    Leitner, Erich
    Plocek, Thomas J.
    Vanhessche, Koenraad
    Pichler, Harald
    YEAST, 2020, 37 (01) : 163 - 172