One-to-one disjoint path covers in hypercubes with faulty edges

被引:0
|
作者
Fan Wang
Weisheng Zhao
机构
[1] Nanchang University,School of Sciences
[2] Jianghan University,Institute for Interdisciplinary Research
来源
关键词
Hypercubes; Vertex disjoint paths; Path covers; One-to-one; Fault edges;
D O I
暂无
中图分类号
学科分类号
摘要
A one-to-one k-disjoint path cover {P1,P2,…,Pk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2,\ldots ,P_k\}$$\end{document} of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that p(u)≠p(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(u)\ne p(v)$$\end{document} and 1≤k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le n$$\end{document}. Then there exists a one-to-one k-disjoint path cover {P1,P2,…,Pk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2,\ldots ,P_k\}$$\end{document} joining vertices u and v in Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document}. Moreover, when 1≤k≤n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le n-2$$\end{document}, the result still holds even if removing n-2-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2-k$$\end{document} edges from Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document}.
引用
收藏
页码:5583 / 5595
页数:12
相关论文
共 50 条
  • [31] Paired 2-disjoint path covers of multi-dimensional torus networks with 2n-3 faulty edges
    Li, Jing
    Wang, Guoren
    Chen, Lichao
    THEORETICAL COMPUTER SCIENCE, 2017, 677 : 1 - 11
  • [32] Hamiltonicity of hypercubes with a constraint of required and faulty edges
    Lih-Hsing Hsu
    Shu-Chung Liu
    Yeong-Nan Yeh
    Journal of Combinatorial Optimization, 2007, 14 : 197 - 204
  • [33] Hamiltonicity of hypercubes with a constraint of required and faulty edges
    Hsu, Lih-Hsing
    Liu, Shu-Chung
    Yeh, Yeong-Nan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (2-3) : 197 - 204
  • [34] Hamiltonian cycles in hypercubes with more faulty edges
    Li, Jing
    Liu, Di
    Gao, Xiaohui
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (06) : 1155 - 1171
  • [35] Many-to-many disjoint paths in faulty hypercubes
    Chen, Xie-Bin
    INFORMATION SCIENCES, 2009, 179 (18) : 3110 - 3115
  • [36] The maximum number of disjoint paths in faulty enhanced hypercubes
    Liu, Hongmei
    Jin, Dan
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 108 : 99 - 112
  • [37] Paired 2-disjoint path covers of burnt pancake graphs with faulty elements
    Dvorak, Tomas
    Gu, Mei-Mei
    THEORETICAL COMPUTER SCIENCE, 2024, 986
  • [38] Many-to-many n-disjoint path covers in n-dimensional hypercubes
    Liu, Di
    Li, Jing
    INFORMATION PROCESSING LETTERS, 2010, 110 (14-15) : 580 - 584
  • [39] Fault-tolerance of balanced hypercubes with faulty vertices and faulty edges
    Gu, Mei-Mei
    Hao, Rong-Xia
    ARS COMBINATORIA, 2018, 140 : 45 - 61
  • [40] Optimal one-to-many disjoint paths in folded hypercubes
    Lai, CN
    Chen, GH
    Duh, DR
    I-SPAN 2000: INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES ALGORITHMS AND NETWORKS, PROCEEDINGS, 2000, : 148 - 153