One-to-one disjoint path covers in hypercubes with faulty edges

被引:0
|
作者
Fan Wang
Weisheng Zhao
机构
[1] Nanchang University,School of Sciences
[2] Jianghan University,Institute for Interdisciplinary Research
来源
关键词
Hypercubes; Vertex disjoint paths; Path covers; One-to-one; Fault edges;
D O I
暂无
中图分类号
学科分类号
摘要
A one-to-one k-disjoint path cover {P1,P2,…,Pk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2,\ldots ,P_k\}$$\end{document} of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that p(u)≠p(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(u)\ne p(v)$$\end{document} and 1≤k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le n$$\end{document}. Then there exists a one-to-one k-disjoint path cover {P1,P2,…,Pk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2,\ldots ,P_k\}$$\end{document} joining vertices u and v in Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document}. Moreover, when 1≤k≤n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le n-2$$\end{document}, the result still holds even if removing n-2-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2-k$$\end{document} edges from Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document}.
引用
收藏
页码:5583 / 5595
页数:12
相关论文
共 50 条
  • [21] Many-to-Many Disjoint Path Covers in the Presence of Faulty Elements
    Park, Jung-Heum
    Kim, Hee-Chul
    Lim, Hyeong-Seok
    IEEE TRANSACTIONS ON COMPUTERS, 2009, 58 (04) : 528 - 540
  • [22] General-demand disjoint path covers in a graph with faulty elements
    Lee, Jae-Ha
    Park, Jung-Heum
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (05) : 606 - 617
  • [23] Many-to-many disjoint path covers in a graph with faulty elements
    Park, JH
    Kim, HC
    Lim, HS
    ALGORITHMS AND COMPUTATION, 2004, 3341 : 742 - 753
  • [24] Hamiltonian laceability in hypercubes with faulty edges
    Wang, Fan
    Zhang, Heping
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 438 - 445
  • [25] Hamiltonian cycles in hypercubes With faulty edges
    Liu, Jia-Jie
    Wang, Yue-Li
    INFORMATION SCIENCES, 2014, 256 : 225 - 233
  • [26] One-to-One Matching of RTT and Path Changes
    Shao, Wenqin
    Rougier, Jean-Louis
    Paris, Antoine
    Devienne, Francois
    Viste, Mateusz
    2017 PROCEEDINGS OF THE 29TH INTERNATIONAL TELETRAFFIC CONGRESS (ITC 29), VOL 1, 2017, : 196 - 204
  • [27] ON THE EXISTENCE OF DISJOINT SPANNING PATHS IN FAULTY HYPERCUBES
    Lin, Cheng-Kuan
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    Cheng, Eddie
    Liptak, Laszlo
    JOURNAL OF INTERCONNECTION NETWORKS, 2010, 11 (1-2) : 71 - 96
  • [28] Path embedding in faulty hypercubes
    Ma, Meijie
    Liu, Guizhen
    Pan, Xiangfeng
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 192 (01) : 233 - 238
  • [29] One-to-one node disjoint paths on divide-and-swap cubes
    Zhang, Yunsong
    You, Lantao
    Han, Yuejuan
    Xiao, Rong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY, 2024, 9 (03) : 183 - 201
  • [30] One-to-Many Node Disjoint Path Covers on WK-Recursive Networks
    You, Lan-tao
    Han, Yue-juan
    Wang, Xi
    Zhou, Chen
    Gu, Rui
    2ND INTERNATIONAL CONFERENCE ON COMMUNICATIONS, INFORMATION MANAGEMENT AND NETWORK SECURITY (CIMNS 2017), 2017, : 132 - 136