One-to-one disjoint path covers in hypercubes with faulty edges

被引:0
|
作者
Fan Wang
Weisheng Zhao
机构
[1] Nanchang University,School of Sciences
[2] Jianghan University,Institute for Interdisciplinary Research
来源
关键词
Hypercubes; Vertex disjoint paths; Path covers; One-to-one; Fault edges;
D O I
暂无
中图分类号
学科分类号
摘要
A one-to-one k-disjoint path cover {P1,P2,…,Pk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2,\ldots ,P_k\}$$\end{document} of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that p(u)≠p(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(u)\ne p(v)$$\end{document} and 1≤k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le n$$\end{document}. Then there exists a one-to-one k-disjoint path cover {P1,P2,…,Pk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2,\ldots ,P_k\}$$\end{document} joining vertices u and v in Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document}. Moreover, when 1≤k≤n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le n-2$$\end{document}, the result still holds even if removing n-2-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2-k$$\end{document} edges from Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document}.
引用
收藏
页码:5583 / 5595
页数:12
相关论文
共 50 条
  • [1] One-to-one disjoint path covers in hypercubes with faulty edges
    Wang, Fan
    Zhao, Weisheng
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (08): : 5583 - 5595
  • [2] One-to-one disjoint path covers in digraphs with faulty edges
    Jing, Ruixiao
    Sun, Yuefang
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 493
  • [3] One-to-one disjoint path covers in digraphs
    Cao, Huabin
    Zhang, Bicheng
    Zhou, Zhiheng
    THEORETICAL COMPUTER SCIENCE, 2018, 714 : 27 - 35
  • [4] One-to-One Disjoint Path Covers in DCell
    Wang, Xi
    Fan, Jianxi
    Cheng, Baolei
    Liu, Wenjun
    Wang, Yan
    NETWORK AND PARALLEL COMPUTING, NPC 2013, 2013, 8147 : 61 - 70
  • [5] Paired many-to-many disjoint path covers of hypercubes with faulty edges
    Chen, Xie-Bin
    INFORMATION PROCESSING LETTERS, 2012, 112 (03) : 61 - 66
  • [6] One-to-one disjoint path covers on alternating group graphs
    You, Lantao
    Fan, Jianxi
    Han, Yuejuan
    Jia, Xiaohua
    THEORETICAL COMPUTER SCIENCE, 2015, 562 : 146 - 164
  • [7] One-to-one Disjoint Path Covers on WK-networks
    You, Lantao
    Han, Yuejuan
    MATERIAL SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY II, 2014, 651-653 : 1875 - +
  • [8] One-to-one disjoint path covers on multi-dimensional tori
    Li, Jing
    Liu, Di
    Yang, Yuxing
    Yuan, Jun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (06) : 1114 - 1123
  • [9] One-to-one Disjoint-path Covers of Leaf-sort Graphs
    Wang, Shiying
    Wang, Huanhuan
    Zhao, Lina
    Feng, Wei
    PARALLEL PROCESSING LETTERS, 2024, 34 (03N04)
  • [10] Paired many-to-many disjoint path covers in faulty hypercubes
    Jo, Shinhaeng
    Park, Jung-Heum
    Chwa, Kyung-Yong
    THEORETICAL COMPUTER SCIENCE, 2013, 513 : 1 - 24