A dimension reduction approach for conditional Kaplan–Meier estimators

被引:0
|
作者
Weiyu Li
Valentin Patilea
机构
[1] CREST(Ensai),
[2] Shandong University,undefined
来源
TEST | 2018年 / 27卷
关键词
Bootstrap; Cure rate; Kernel smoothing; Semiparametric regression; Single-index; -statistics; 62N01; 62G08; 62N02; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
Many quantities of interest in survival analysis are smooth, closed-form functionals of the law of the observations. For instance, the conditional law of a lifetime of interest under random right censoring, and the conditional probability of being cured. In such cases, one can easily derive nonparametric estimators for the quantities of interest by plugging-into the functional the nonparametric estimators of the law of the observations. However, with multivariate covariates, the nonparametric estimation suffers from the curse of dimensionality. Here, a new dimension reduction approach for survival analysis is proposed and investigated in the right-censored lifetime case. First, we consider a single-index hypothesis on the conditional law of the observations and propose a n-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}-$$\end{document}asymptotically normal semiparametric estimator. Next, we apply the smooth functionals to this estimator. This results in semiparametric estimators of the quantities of interest that avoid the curse of dimensionality. Confidence regions for the index and the functional of interest are built by bootstrap. The new methodology allows to test the dimension reduction assumption, can be extended to other dimension reduction methods and can be applied to closed-form functionals of more general censoring mechanisms.
引用
收藏
页码:295 / 315
页数:20
相关论文
共 50 条
  • [41] EXTENSIONS OF THE KAPLAN-MEIER ESTIMATOR
    CHIEN, WTK
    KUO, W
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1995, 24 (04) : 953 - 964
  • [42] BOOTSTRAPPING THE KAPLAN-MEIER ESTIMATOR
    AKRITAS, MG
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (396) : 1032 - 1038
  • [43] A GENERALIZED KAPLAN-MEIER ESTIMATOR
    ROBERTSON, JB
    UPPULURI, VRR
    ANNALS OF STATISTICS, 1984, 12 (01): : 366 - 371
  • [44] Kaplan-Meier survival curves
    Hess, Aaron S.
    Hess, John R.
    TRANSFUSION, 2020, 60 (04) : 670 - 672
  • [45] MOMENTS OF THE KAPLAN-MEIER ESTIMATOR
    CHANG, MN
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1991, 53 : 27 - 50
  • [46] WHAT PRICE KAPLAN-MEIER
    MILLER, RG
    BIOMETRICS, 1983, 39 (04) : 1077 - 1081
  • [47] KAPLAN-MEIER ESTIMATE ON THE PLANE
    DABROWSKA, DM
    ANNALS OF STATISTICS, 1988, 16 (04): : 1475 - 1489
  • [48] THE BIAS OF KAPLAN-MEIER INTEGRALS
    STUTE, W
    SCANDINAVIAN JOURNAL OF STATISTICS, 1994, 21 (04) : 475 - 484
  • [49] A NOTE ON THE KAPLAN-MEIER ESTIMATOR
    OAKES, D
    AMERICAN STATISTICIAN, 1993, 47 (01): : 39 - 40
  • [50] Statistical interpretation of Kaplan–Meier curves
    Mark G. A. Palazzo
    Maie Templeton
    Intensive Care Medicine, 2007, 33 : 2235 - 2235