A dimension reduction approach for conditional Kaplan–Meier estimators

被引:0
|
作者
Weiyu Li
Valentin Patilea
机构
[1] CREST(Ensai),
[2] Shandong University,undefined
来源
TEST | 2018年 / 27卷
关键词
Bootstrap; Cure rate; Kernel smoothing; Semiparametric regression; Single-index; -statistics; 62N01; 62G08; 62N02; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
Many quantities of interest in survival analysis are smooth, closed-form functionals of the law of the observations. For instance, the conditional law of a lifetime of interest under random right censoring, and the conditional probability of being cured. In such cases, one can easily derive nonparametric estimators for the quantities of interest by plugging-into the functional the nonparametric estimators of the law of the observations. However, with multivariate covariates, the nonparametric estimation suffers from the curse of dimensionality. Here, a new dimension reduction approach for survival analysis is proposed and investigated in the right-censored lifetime case. First, we consider a single-index hypothesis on the conditional law of the observations and propose a n-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}-$$\end{document}asymptotically normal semiparametric estimator. Next, we apply the smooth functionals to this estimator. This results in semiparametric estimators of the quantities of interest that avoid the curse of dimensionality. Confidence regions for the index and the functional of interest are built by bootstrap. The new methodology allows to test the dimension reduction assumption, can be extended to other dimension reduction methods and can be applied to closed-form functionals of more general censoring mechanisms.
引用
收藏
页码:295 / 315
页数:20
相关论文
共 50 条
  • [31] Turnbull versus Kaplan-Meier Estimators of Cure Rate Estimation Using Interval Censored Data
    Aljawadi, Bader Ahmad
    Abu Bakar, Mohd Rizam
    Akma, Noor
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2012, 20 (02): : 243 - 255
  • [32] Nonlinear dimension reduction for conditional quantiles
    Christou, Eliana
    Settle, Annabel
    Artemiou, Andreas
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (04) : 937 - 956
  • [33] Kaplan-Meier analysis in urological practice [Kaplan-Meier-Analysen in der urologischen Praxis]
    Rink M.
    Kluth L.A.
    Shariat S.F.
    Fisch M.
    Dahlem R.
    Dahm P.
    Der Urologe, 2013, 52 (6): : 838 - 841
  • [34] Dimension reduction techniques for conditional expectiles
    Christou, Eliana
    STATISTICS, 2023, 57 (04) : 960 - 985
  • [35] Nonlinear dimension reduction for conditional quantiles
    Eliana Christou
    Annabel Settle
    Andreas Artemiou
    Advances in Data Analysis and Classification, 2021, 15 : 937 - 956
  • [36] DIMENSION REDUCTION FOR CONDITIONAL VARIANCE IN REGRESSIONS
    Zhu, Li-Ping
    Zhu, Li-Xing
    STATISTICA SINICA, 2009, 19 (02) : 869 - 883
  • [37] Dimension reduction for conditional mean in regression
    Cook, RD
    Bing, L
    ANNALS OF STATISTICS, 2002, 30 (02): : 455 - 474
  • [38] On a new class of sufficient dimension reduction estimators
    Dong, Yuexiao
    Zhang, Yongxu
    STATISTICS & PROBABILITY LETTERS, 2018, 139 : 90 - 94
  • [39] On an exponential bound for the Kaplan–Meier estimator
    Jon A. Wellner
    Lifetime Data Analysis, 2007, 13 : 481 - 496
  • [40] A model-free conditional screening approach via sufficient dimension reduction
    Huo, Lei
    Wen, Xuerong Meggie
    Yu, Zhou
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (04) : 970 - 988