Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces

被引:0
|
作者
Victor I. Burenkov
Vagif S. Guliyev
机构
[1] Cardiff University,Cardiff School of Mathematics
[2] Baku State University,Institute of Mathematics and Mechanics, Academy of Sciences of Azerbaijan
来源
Potential Analysis | 2009年 / 30卷
关键词
Riesz potential; Fractional maximal operator; Local Morrey-type spaces; Hardy operator on the cone of monotonic functions; Weak Morrey-type spaces; Weighted estimates; Primary 42B20; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of the boundedness of the Riesz potential Iα, 0 < α < n, in local Morrey-type spaces is reduced to the boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sufficient conditions for the boundedness in local Morrey-type spaces for all admissible values of the parameters. Moreover, for a certain range of the parameters, these sufficient conditions coincide with the necessary ones.
引用
收藏
相关论文
共 50 条
  • [31] A Sufficient Condition for Compactness of the Commutators of Riesz Potential on Global Morrey-Type Space
    Bokayev, Nurzhan
    Matin, Dauren
    Baituyakova, Zhuldyz
    [J]. INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018), 2018, 1997
  • [32] NECESSARY AND SUFFICIENT CONDITIONS FOR BOUNDEDNESS OF THE HARDY-TYPE OPERATOR FROM A WEIGHTED LEBESGUE SPACE TO A MORREY-TYPE SPACE
    Burenkov, V. I.
    Oinarov, R.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (01): : 1 - 19
  • [33] Necessary and sufficient conditions for boundedness of multilinear fractional integrals with rough kernels on Morrey type spaces
    Shi, Yanlong
    Si, Zengyan
    Tao, Xiangxing
    Shi, Yafeng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 19
  • [34] Necessary and sufficient conditions for boundedness of multilinear fractional integrals with rough kernels on Morrey type spaces
    Yanlong Shi
    Zengyan Si
    Xiangxing Tao
    Yafeng Shi
    [J]. Journal of Inequalities and Applications, 2016
  • [35] The boundedness of fractional integral operators in local and global mixed Morrey-type spaces
    Zhang, Houkun
    Zhou, Jiang
    [J]. POSITIVITY, 2022, 26 (01)
  • [36] BOUNDEDNESS OF THE ANISOTROPIC FRACTIONAL MAXIMAL OPERATOR IN ANISOTROPIC LOCAL MORREY-TYPE SPACES
    Akbulut, A.
    Ekincioglu, I.
    Serbetci, A.
    Tararykova, T.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (02): : 5 - 30
  • [37] The boundedness of fractional integral operators in local and global mixed Morrey-type spaces
    Houkun Zhang
    Jiang Zhou
    [J]. Positivity, 2022, 26
  • [38] Decompositions of local Morrey-type spaces
    Guliyev, Vagif S.
    Hasanov, Sabir G.
    Sawano, Yoshihiro
    [J]. POSITIVITY, 2017, 21 (03) : 1223 - 1252
  • [39] BOUNDEDNESS OF THE GENERALIZED RIEMANN-LIOUVILLE OPERATOR IN LOCAL MORREY-TYPE SPACES
    Senouci, M. A.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (04): : 63 - 68
  • [40] Dual spaces of local Morrey-type spaces
    Amiran Gogatishvili
    Rza Mustafayev
    [J]. Czechoslovak Mathematical Journal, 2011, 61 : 609 - 622