Dynamic Programming Revisited: Improving Knapsack Algorithms

被引:0
|
作者
U. Pferschy
机构
[1] Department of Statistics and Operations Research,
[2] University of Graz,undefined
[3] Universitätsstr. 15,undefined
[4] A-8010 Graz,undefined
[5] Austria,undefined
[6] e-mail: pferschy@kfunigraz.ac.at ,undefined
来源
Computing | 1999年 / 63卷
关键词
AMS Subject Classifications:90C10, 90C39.; Key words.Knapsack, bounded knapsack, dynamic programming.;
D O I
暂无
中图分类号
学科分类号
摘要
The contribution of this paper is twofold: At first an improved dynamic programming algorithm for the bounded knapsack problem is given. It decreases the running time for an instance with n items and capacity c from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(nc\log c)$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(nc)$\end{document}, which is the same pseudopolynomial complexity as usually given for the 0--1 knapsack problem. In the second part a general approach based on dynamic programming is presented to reduce the storage requirements for combinatorial optimization problems where it is computationally more expensive to compute the explicit solution structure than the optimal solution value. Among other applications of this scheme it is shown that the 0--1 knapsack problem as well as the bounded knapsack problem can be solved in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(nc)$\end{document} time and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(n+c)$\end{document} space.
引用
收藏
页码:419 / 430
页数:11
相关论文
共 50 条
  • [31] Branch-and-Bound and Dynamic Programming Approaches for the Knapsack Problem
    Evgenii Burashnikov
    Operations Research Forum, 5 (4)
  • [32] An approximate dynamic programming approach to solving a dynamic, stochastic multiple knapsack problem
    Perry, Thomas C.
    Hartman, Joseph C.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2009, 16 (03) : 347 - 359
  • [33] Revisiting Sparse Dynamic Programming for the 0/1 Knapsack Problem
    Sifat, Tarequl Islam
    Prajapati, Nirmal
    Rajopadhye, Sanjay
    PROCEEDINGS OF THE 49TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2020, 2020,
  • [34] A dynamic programming method with dominance technique for the knapsack sharing problem
    Boyer, V.
    El Baz, D.
    Elkihel, M.
    CIE: 2009 INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, 2009, : 348 - 353
  • [35] ON THE SOLUTION OF MULTIDIMENSIONAL INTEGER KNAPSACK PROBLEM WITH DYNAMIC PROGRAMMING TECHNIQUE
    Nuri, Elnur
    Nuriyeva, Fidan
    Nuriyev, Urfat
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL. 1, 2020, : 302 - 304
  • [36] Constrained Differential Dynamic Programming Revisited
    Aoyama, Yuichiro
    Boutselis, George
    Patel, Akash
    Theodorou, Evangelos A.
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 9738 - 9744
  • [37] An approximate dynamic programming approach to convex quadratic knapsack problems
    Hua, ZS
    Zhang, B
    Liang, L
    COMPUTERS & OPERATIONS RESEARCH, 2006, 33 (03) : 660 - 673
  • [38] Online Knapsack Revisited
    Cygan, Marek
    Jez, Lukasz
    Sgall, Jiri
    THEORY OF COMPUTING SYSTEMS, 2016, 58 (01) : 153 - 190
  • [39] Online Knapsack Revisited
    Cygan, Marek
    Jez, Lukasz
    APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2013, 2014, 8447 : 144 - 155
  • [40] Online Knapsack Revisited
    Marek Cygan
    Łukasz Jeż
    Jiří Sgall
    Theory of Computing Systems, 2016, 58 : 153 - 190