Dynamic Programming Revisited: Improving Knapsack Algorithms

被引:0
|
作者
U. Pferschy
机构
[1] Department of Statistics and Operations Research,
[2] University of Graz,undefined
[3] Universitätsstr. 15,undefined
[4] A-8010 Graz,undefined
[5] Austria,undefined
[6] e-mail: pferschy@kfunigraz.ac.at ,undefined
来源
Computing | 1999年 / 63卷
关键词
AMS Subject Classifications:90C10, 90C39.; Key words.Knapsack, bounded knapsack, dynamic programming.;
D O I
暂无
中图分类号
学科分类号
摘要
The contribution of this paper is twofold: At first an improved dynamic programming algorithm for the bounded knapsack problem is given. It decreases the running time for an instance with n items and capacity c from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(nc\log c)$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(nc)$\end{document}, which is the same pseudopolynomial complexity as usually given for the 0--1 knapsack problem. In the second part a general approach based on dynamic programming is presented to reduce the storage requirements for combinatorial optimization problems where it is computationally more expensive to compute the explicit solution structure than the optimal solution value. Among other applications of this scheme it is shown that the 0--1 knapsack problem as well as the bounded knapsack problem can be solved in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(nc)$\end{document} time and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(n+c)$\end{document} space.
引用
收藏
页码:419 / 430
页数:11
相关论文
共 50 条
  • [21] Improved Dynamic Programming in Connection with an FPTAS for the Knapsack Problem
    Hans Kellerer
    Ulrich Pferschy
    Journal of Combinatorial Optimization, 2004, 8 : 5 - 11
  • [22] A dynamic programming approach for consistency and propagation for knapsack constraints
    Trick, MA
    ANNALS OF OPERATIONS RESEARCH, 2003, 118 (1-4) : 73 - 84
  • [23] Multiple criteria dynamic programming and multiple knapsack problem
    Sitarz, Sebastian
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 : 598 - 605
  • [24] Dynamic programming approaches to the multiple criteria knapsack problem
    Klamroth, K
    Wiecek, MM
    NAVAL RESEARCH LOGISTICS, 2000, 47 (01) : 57 - 76
  • [25] On the Performance of Baseline Evolutionary Algorithms on the Dynamic Knapsack Problem
    Roostapour, Vahid
    Neumann, Aneta
    Neumann, Frank
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT I, 2018, 11101 : 158 - 169
  • [26] The Dynamic Knapsack Problem Revisited: A New Benchmark Problem for Dynamic Combinatorial Optimisation
    Rohlfshagen, Philipp
    Yao, Xin
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2009, 5484 : 745 - 754
  • [27] DISCRETE DYNAMIC PROGRAMMING ALGORITHMS
    SEINFELD, JH
    LAPIDUS, L
    INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1968, 7 (03): : 479 - &
  • [28] Evolutionary algorithms and dynamic programming
    Doerr, Benjamin
    Eremeev, Anton
    Neumann, Frank
    Theile, Madeleine
    Thyssen, Christian
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (43) : 6020 - 6035
  • [29] The Parallel Processing Approach to the Dynamic Programming Algorithm of Knapsack Problem
    Sin, Si Thu Thant
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 2252 - 2256
  • [30] Improved dynamic programming and approximation results for the knapsack problem with setups
    Pferschy, Ulrich
    Scatamacchia, Rosario
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2018, 25 (02) : 667 - 682