The POLARBEAR-2 Experiment

被引:0
|
作者
A. Suzuki
P. Ade
Y. Akiba
C. Aleman
K. Arnold
M. Atlas
D. Barron
J. Borrill
S. Chapman
Y. Chinone
A. Cukierman
M. Dobbs
T. Elleflot
J. Errard
G. Fabbian
G. Feng
A. Gilbert
W. Grainger
N. Halverson
M. Hasegawa
K. Hattori
M. Hazumi
W. Holzapfel
Y. Hori
Y. Inoue
G. Jaehnig
N. Katayama
B. Keating
Z. Kermish
R. Keskitalo
T. Kisner
A. Lee
F. Matsuda
T. Matsumura
H. Morii
S. Moyerman
M. Myers
M. Navaroli
H. Nishino
T. Okamura
C. Reichart
P. Richards
C. Ross
K. Rotermund
M. Sholl
P. Siritanasak
G. Smecher
N. Stebor
R. Stompor
J. Suzuki
机构
[1] University of California,Department of Physics
[2] University of Cardiff,School of Physics and Astronomy
[3] High Energy Accelerator Research Organization,Department of Physics
[4] University of California,Department of Physics and Atmospheric Science
[5] San Diego,Department of Physics
[6] Lawrence Berkeley National Laboratory,Department of Physics
[7] Dalhousie University,Department of Physics
[8] McGill University,undefined
[9] Laboratoire Astroparticule and Cosmologie,undefined
[10] University of Colorado,undefined
[11] Kavli Institute of Physics and Mathematics of the Universe,undefined
[12] Princeton University,undefined
[13] National Institute for Fusion Science,undefined
[14] Osaka University,undefined
来源
关键词
Cosmic microwave background; Inflation; Lensing ; Polarization; B-mode;
D O I
暂无
中图分类号
学科分类号
摘要
We present an overview of the design and development of the POLARBEAR-2 experiment. The POLARBEAR-2 experiment is a cosmic microwave background polarimetry experiment, which aims to characterize the small angular scale B-mode signal due to gravitational lensing and search for the large angular scale B-mode signal from inflationary gravitational waves. The experiment will have a 365 mm diameter multi-chroic focal plane filled with 7,588 polarization sensitive antenna-coupled Transition Edge Sensor bolometers and will observe at 95 and 150 GHz. The focal plane is cooled to 250 mK. The bolometers will be read-out by SQUIDs with 32×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$32\times $$\end{document} frequency domain multiplexing. The experiment will utilize high purity alumina lenses and thermal filters to achieve the required high optical throughput. A continuously rotating, cooled half-wave plate will be used to give stringent control over systematic errors. The experiment is designed to achieve a noise equivalent temperature of 5.7 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}Ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document}, and this allows us to constrain the signal from the inflationary primordial gravitational corresponding to a tensor-to-scalar ratio of r=0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 0.01$$\end{document} (2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sigma $$\end{document}). POLARBEAR-2 will also be able to put a constraint on the sum of neutrino masses to 90 meV (1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document}) with POLARBEAR-2 data alone and 65 meV (1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document}) when combined with the Planck satellite. We plan to start observations in 2014 in the Atacama Desert in Chile.
引用
收藏
页码:719 / 725
页数:6
相关论文
共 50 条
  • [41] King of Arctica Polarbear Knut is an international climate-symbol
    Flinterud, Guro
    INTERNASJONAL POLITIKK, 2013, 71 (04) : 591 - 600
  • [42] Effect of Stray Impedance in Frequency-Division Multiplexed Readout of TES Sensors in POLARBEAR-2b
    T. Elleflot
    K. Arnold
    D. Barron
    K. T. Crowley
    M. Dobbs
    J. Groh
    M. Hasegawa
    M. Hazumi
    C. Hill
    L. Howe
    J. Ito
    O. Jeong
    D. Kaneko
    N. Katayama
    B. Keating
    A. Kusaka
    A. T. Lee
    L. N. Lowry
    C. Raum
    J. Seibert
    M. Silva-Feaver
    P. Siritanasak
    A. Suzuki
    S. Takakura
    S. Takatori
    C. Tsai
    B. Westbrook
    Journal of Low Temperature Physics, 2020, 199 : 840 - 848
  • [43] Effect of Stray Impedance in Frequency-Division Multiplexed Readout of TES Sensors in POLARBEAR-2b
    Elleflot, T.
    Arnold, K.
    Barron, D.
    Crowley, K. T.
    Dobbs, M.
    Groh, J.
    Hasegawa, M.
    Hazumi, M.
    Hill, C.
    Howe, L.
    Ito, J.
    Jeong, O.
    Kaneko, D.
    Katayama, N.
    Keating, B.
    Kusaka, A.
    Lee, A. T.
    Lowry, L. N.
    Raum, C.
    Seibert, J.
    Silva-Feaver, M.
    Siritanasak, P.
    Suzuki, A.
    Takakura, S.
    Takatori, S.
    Tsai, C.
    Westbrook, B.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (3-4) : 840 - 848
  • [44] POLARBEAR: Ultra-high energy physics with measurements of CMB polarization
    Lee, Adrian T.
    Tran, Huan
    Ade, Peter
    Arnold, Kam
    Borrill, Julian
    Dobbs, Matt A.
    Errard, Josquin
    Halverson, Nils
    Holzapfel, William L.
    Howard, Jacob
    Jaffe, Andrew
    Keating, Brian
    Kermish, Zigmund
    Linder, Eric
    Miller, Nathan
    Myers, Mike
    Niarchou, Anastasia
    Paar, Hans
    Reichardt, Christian
    Spieler, Helmuth
    Steinbach, Bryan
    Stompor, Radek
    Tucker, Carole
    Quealy, Erin
    Richards, Paul L.
    Zahn, Oliver
    ACCELERATORS IN THE UNIVERSE, 2008, 1040 : 66 - +
  • [45] 'Experiment no 2'
    Szabó, AT
    POETRY WALES, 2002, 37 (04): : 25 - 25
  • [46] Performance of a continuously rotating half-wave plate on the POLARBEAR telescope
    Takakura, Satoru
    Aguilar, Mario
    Akiba, Yoshiki
    Arnold, Kam
    Baccigalupi, Carlo
    Barron, Darcy
    Beckman, Shawn
    Boettger, David
    Borrill, Julian
    Chapman, Scott
    Chinone, Yuji
    Cukierman, Ari
    Ducout, Anne
    Elleflot, Tucker
    Errard, Josquin
    Fabbian, Giulio
    Fujino, Takuro
    Galitzki, Nicholas
    Goeckner-Wald, Neil
    Halverson, Nils W.
    Hasegawa, Masaya
    Hattori, Kaori
    Hazumi, Masashi
    Hill, Charles
    Howe, Logan
    Inoue, Yuki
    Jaffe, Andrew H.
    Jeong, Oliver
    Kaneko, Daisuke
    Katayama, Nobuhiko
    Keating, Brian
    Keskitalo, Reijo
    Kisner, Theodore
    Krachmalnicoff, Nicoletta
    Kusaka, Akito
    Lee, Adrian T.
    Leon, David
    Lowry, Lindsay
    Matsuda, Frederick
    Matsumura, Tomotake
    Navaroli, Martin
    Nishino, Haruki
    Paar, Hans
    Peloton, Julien
    Poletti, Davide
    Puglisi, Giuseppe
    Reichardt, Christian L.
    Ross, Colin
    Siritanasak, Praween
    Suzuki, Aritoki
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (05):
  • [47] The Simons Array: expanding POLARBEAR to three multi-chroic telescopes
    Arnold, K.
    Stebor, N.
    Ade, P. A. R.
    Akiba, Y.
    Anthony, A. E.
    Atlas, M.
    Barron, D.
    Bender, A.
    Boettger, D.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Cukierman, A.
    Dobbs, M.
    Elleflot, T.
    Errard, J.
    Fabbian, G.
    Feng, C.
    Gilbert, A.
    Goeckner-Wald, N.
    Halverson, N. W.
    Hasegawa, M.
    Hattori, K.
    Hazumi, M.
    Holzapfel, W. L.
    Hori, Y.
    Inoue, Y.
    Jaehnig, G. C.
    Jaffe, A. H.
    Katayama, N.
    Keating, B.
    Kermish, Z.
    Keskitalo, R.
    Kisner, T.
    Le Jeune, M.
    Lee, A. T.
    Leitch, E. M.
    Linder, E.
    Matsuda, F.
    Matsumura, T.
    Meng, X.
    Miller, N. J.
    Morii, H.
    Myers, M. J.
    Navaroli, M.
    Nishino, H.
    Okamura, T.
    Paar, H.
    Peloton, J.
    Poletti, D.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII, 2014, 9153
  • [48] Making maps of cosmic microwave background polarization for B-mode studies: The POLARBEAR example
    Poletti, Davide (dpoletti@apc.univ-paris7.fr), 1600, EDP Sciences (600):
  • [49] Integrated Electrical Properties of the Frequency Multiplexed Cryogenic Readout System for Polarbear/Simons Array
    Barron, Darcy
    Mitchell, Kayla
    Groh, John
    Arnold, Kam
    Elleflot, Tucker
    Howe, Logan
    Ito, Jen
    Lee, Adrian T.
    Lowry, Lindsay N.
    Anderson, Adam
    Avva, Jessica
    Adkins, Tylor
    Baccigalupi, Carlo
    Cheung, Kolen
    Chinone, Yuji
    Jeong, Oliver
    Katayama, Nobu
    Keating, Brian
    Montgomery, Joshua
    Nishino, Haruki
    Raum, Christopher
    Siritanasak, Praween
    Suzuki, Aritoki
    Takatori, Sayuri
    Tsai, Calvin
    Westbrook, Benjamin
    Zhou, Yuyang
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (05)
  • [50] A cryogenic continuously rotating half-wave plate mechanism for the POLARBEAR-2b cosmic microwave background receiver
    Hill, C. A.
    Kusaka, A.
    Ashton, P.
    Barton, P.
    Adkins, T.
    Arnold, K.
    Bixler, B.
    Ganjam, S.
    Lee, A. T.
    Matsuda, F.
    Matsumura, T.
    Sakurai, Y.
    Tat, R.
    Zhou, Y.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (12):