The POLARBEAR-2 Experiment

被引:0
|
作者
A. Suzuki
P. Ade
Y. Akiba
C. Aleman
K. Arnold
M. Atlas
D. Barron
J. Borrill
S. Chapman
Y. Chinone
A. Cukierman
M. Dobbs
T. Elleflot
J. Errard
G. Fabbian
G. Feng
A. Gilbert
W. Grainger
N. Halverson
M. Hasegawa
K. Hattori
M. Hazumi
W. Holzapfel
Y. Hori
Y. Inoue
G. Jaehnig
N. Katayama
B. Keating
Z. Kermish
R. Keskitalo
T. Kisner
A. Lee
F. Matsuda
T. Matsumura
H. Morii
S. Moyerman
M. Myers
M. Navaroli
H. Nishino
T. Okamura
C. Reichart
P. Richards
C. Ross
K. Rotermund
M. Sholl
P. Siritanasak
G. Smecher
N. Stebor
R. Stompor
J. Suzuki
机构
[1] University of California,Department of Physics
[2] University of Cardiff,School of Physics and Astronomy
[3] High Energy Accelerator Research Organization,Department of Physics
[4] University of California,Department of Physics and Atmospheric Science
[5] San Diego,Department of Physics
[6] Lawrence Berkeley National Laboratory,Department of Physics
[7] Dalhousie University,Department of Physics
[8] McGill University,undefined
[9] Laboratoire Astroparticule and Cosmologie,undefined
[10] University of Colorado,undefined
[11] Kavli Institute of Physics and Mathematics of the Universe,undefined
[12] Princeton University,undefined
[13] National Institute for Fusion Science,undefined
[14] Osaka University,undefined
来源
关键词
Cosmic microwave background; Inflation; Lensing ; Polarization; B-mode;
D O I
暂无
中图分类号
学科分类号
摘要
We present an overview of the design and development of the POLARBEAR-2 experiment. The POLARBEAR-2 experiment is a cosmic microwave background polarimetry experiment, which aims to characterize the small angular scale B-mode signal due to gravitational lensing and search for the large angular scale B-mode signal from inflationary gravitational waves. The experiment will have a 365 mm diameter multi-chroic focal plane filled with 7,588 polarization sensitive antenna-coupled Transition Edge Sensor bolometers and will observe at 95 and 150 GHz. The focal plane is cooled to 250 mK. The bolometers will be read-out by SQUIDs with 32×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$32\times $$\end{document} frequency domain multiplexing. The experiment will utilize high purity alumina lenses and thermal filters to achieve the required high optical throughput. A continuously rotating, cooled half-wave plate will be used to give stringent control over systematic errors. The experiment is designed to achieve a noise equivalent temperature of 5.7 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}Ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document}, and this allows us to constrain the signal from the inflationary primordial gravitational corresponding to a tensor-to-scalar ratio of r=0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 0.01$$\end{document} (2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sigma $$\end{document}). POLARBEAR-2 will also be able to put a constraint on the sum of neutrino masses to 90 meV (1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document}) with POLARBEAR-2 data alone and 65 meV (1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document}) when combined with the Planck satellite. We plan to start observations in 2014 in the Atacama Desert in Chile.
引用
收藏
页码:719 / 725
页数:6
相关论文
共 50 条
  • [21] The POLARBEAR CMB Polarization Experiment
    Arnold, K.
    Ade, P. A. R.
    Anthony, A. E.
    Aubin, F.
    Boettger, D.
    Borrill, J.
    Cantalupo, C.
    Dobbs, M. A.
    Errard, J.
    Flanigan, D.
    Ghribi, A.
    Halverson, N.
    Hazumi, M.
    Holzapfel, W. L.
    Howard, J.
    Hyland, P.
    Jaffe, A.
    Keating, B.
    Kisner, T.
    Kermish, Z.
    Lee, A. T.
    Linder, E.
    Lungu, M.
    Matsumura, T.
    Miller, N.
    Meng, X.
    Myers, M.
    Nishino, H.
    O'Brient, R.
    O'Dea, D.
    Reichardt, C.
    Schanning, I.
    Shimizu, A.
    Shimmin, C.
    Shimon, M.
    Spieler, H.
    Steinbach, B.
    Stompor, R.
    Suzuki, A.
    Tomaru, T.
    Tran, H. T.
    Tucker, C.
    Quealy, E.
    Richards, P. L.
    Zahn, O.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY V, 2010, 7741
  • [22] Test Deployment of the PolarBear Experiment
    Richards, P. L.
    35TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ 2010), 2010,
  • [23] The POLARBEAR Cosmic Microwave Background Polarization Experiment
    D. Barron
    P. Ade
    A. Anthony
    K. Arnold
    D. Boettger
    J. Borrill
    S. Chapman
    Y. Chinone
    M. Dobbs
    J. Edwards
    J. Errard
    G. Fabbian
    D. Flanigan
    G. Fuller
    A. Ghribi
    W. Grainger
    N. Halverson
    M. Hasegawa
    K. Hattori
    M. Hazumi
    W. Holzapfel
    J. Howard
    P. Hyland
    G. Jaehnig
    A. Jaffe
    B. Keating
    Z. Kermish
    R. Keskitalo
    T. Kisner
    A. T. Lee
    M. Le Jeune
    E. Linder
    M. Lungu
    F. Matsuda
    T. Matsumura
    X. Meng
    N. J. Miller
    H. Morii
    S. Moyerman
    M. Myers
    H. Nishino
    H. Paar
    J. Peloton
    E. Quealy
    G. Rebeiz
    C. L. Reichardt
    P. L. Richards
    C. Ross
    A. Shimizu
    C. Shimmin
    Journal of Low Temperature Physics, 2014, 176 : 726 - 732
  • [24] The POLARBEAR Cosmic Microwave Background Polarization Experiment
    Barron, D.
    Ade, P.
    Anthony, A.
    Arnold, K.
    Boettger, D.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Dobbs, M.
    Edwards, J.
    Errard, J.
    Fabbian, G.
    Flanigan, D.
    Fuller, G.
    Ghribi, A.
    Grainger, W.
    Halverson, N.
    Hasegawa, M.
    Hattori, K.
    Hazumi, M.
    Holzapfel, W.
    Howard, J.
    Hyland, P.
    Jaehnig, G.
    Jaffe, A.
    Keating, B.
    Kermish, Z.
    Keskitalo, R.
    Kisner, T.
    Lee, A. T.
    Le Jeune, M.
    Linder, E.
    Lungu, M.
    Matsuda, F.
    Matsumura, T.
    Meng, X.
    Miller, N. J.
    Morii, H.
    Moyerman, S.
    Myers, M.
    Nishino, H.
    Paar, H.
    Peloton, J.
    Quealy, E.
    Rebeiz, G.
    Reichardt, C. L.
    Richards, P. L.
    Ross, C.
    Shimizu, A.
    Shimmin, C.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2014, 176 (5-6) : 726 - 732
  • [25] The bolometric focal plane array of the POLARBEAR CMB experiment
    Arnold, K.
    Ade, P. A. R.
    Anthony, A. E.
    Barron, D.
    Boettger, D.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Dobbs, M. A.
    Errard, J.
    Fabbian, G.
    Flanigan, D.
    Fuller, G.
    Ghribi, A.
    Grainger, W.
    Halverson, N.
    Hasegawa, M.
    Hattori, K.
    Hazumi, M.
    Holzapfel, W. L.
    Howard, J.
    Hyland, P.
    Jaffe, A.
    Keating, B.
    Kermish, Z.
    Kisner, T.
    Le Jeune, M.
    Lee, A. T.
    Linder, E.
    Lungu, M.
    Matsuda, F.
    Matsumura, T.
    Miller, N. J.
    Meng, X.
    Morii, H.
    Moyerman, S.
    Myers, M. J.
    Nishino, H.
    Paar, H.
    Quealy, E.
    Reichardt, C.
    Richards, P. L.
    Ross, C.
    Shimizu, A.
    Shimmin, C.
    Shimon, M.
    Sholl, M.
    Siritanasak, P.
    Spieler, H.
    Stebor, N.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VI, 2012, 8452
  • [26] Deployment of Polarbear-2A
    Daisuke Kaneko
    S. Adachi
    P. A. R. Ade
    M. Aguilar Faúndez
    Y. Akiba
    K. Arnold
    C. Baccigalupi
    D. Barron
    D. Beck
    S. Beckman
    F. Bianchini
    D. Boettger
    J. Borrill
    J. Carron
    S. Chapman
    K. Cheung
    Y. Chinone
    K. Crowley
    A. Cukierman
    M. Dobbs
    R. Dűnner
    H. El-Bouhargani
    T. Elleflot
    J. Errard
    G. Fabbian
    S. M. Feeney
    C. Feng
    T. Fujino
    N. Galitzki
    A. Gilbert
    N. Goeckner-Wald
    J. Groh
    G. Hall
    N. W. Halverson
    T. Hamada
    M. Hasegawa
    M. Hazumi
    C. A. Hill
    L. Howe
    Y. Inoue
    G. Jaehnig
    O. Jeong
    N. Katayama
    B. Keating
    R. Keskitalo
    S. Kikuchi
    T. Kisner
    N. Krachmalnicoff
    A. Kusaka
    A. T. Lee
    Journal of Low Temperature Physics, 2020, 199 : 1137 - 1147
  • [27] Deployment of Polarbear-2A
    Kaneko, Daisuke
    Adachi, S.
    Ade, P. A. R.
    Aguilar Faundez, M.
    Akiba, Y.
    Arnold, K.
    Baccigalupi, C.
    Barron, D.
    Beck, D.
    Beckman, S.
    Bianchini, F.
    Boettger, D.
    Borrill, J.
    Carron, J.
    Chapman, S.
    Cheung, K.
    Chinone, Y.
    Crowley, K.
    Cukierman, A.
    Dobbs, M.
    Dunner, R.
    El-Bouhargani, H.
    Elleflot, T.
    Errard, J.
    Fabbian, G.
    Feeney, S. M.
    Feng, C.
    Fujino, T.
    Galitzki, N.
    Gilbert, A.
    Goeckner-Wald, N.
    Groh, J.
    Hall, G.
    Halverson, N. W.
    Hamada, T.
    Hasegawa, M.
    Hazumi, M.
    Hill, C. A.
    Howe, L.
    Inoue, Y.
    Jaehnig, G.
    Jeong, O.
    Katayama, N.
    Keating, B.
    Keskitalo, R.
    Kikuchi, S.
    Kisner, T.
    Krachmalnicoff, N.
    Kusaka, A.
    Lee, A. T.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (3-4) : 1137 - 1147
  • [28] Results of gravitational lensing and primordial gravitational waves from the POLARBEAR experiment
    Chinone, Y.
    Adachi, S.
    Ade, P. A. R.
    Aguilar, M.
    Akiba, Y.
    Arnold, K.
    Baccigalupi, C.
    Barron, D.
    Beck, D.
    Beckman, S.
    Bianchini, F.
    Boettger, D.
    Borrill, J.
    ElBouhargani, H.
    Carron, J.
    Chapman, S.
    Cheung, K.
    Crowley, K.
    Cukierman, A.
    Dunner, R.
    Dobbs, M.
    Ducout, A.
    Elleflot, T.
    Errard, J.
    Fabbian, G.
    Feeney, S. M.
    Feng, C.
    Fujino, T.
    Galitzki, N.
    Gilbert, A.
    Goeckner-Wald, N.
    Groh, J.
    Groh, J. C.
    Hal, G.
    Halverson, N.
    Hamada, T.
    Hasegawa, M.
    Hazumi, M.
    Hill, C. A.
    Howe, L.
    Inoue, Y.
    Jaehnig, G.
    Jaffe, A. H.
    Jeong, O.
    LeJeune, M.
    Kaneko, D.
    Katayama, N.
    Keating, B.
    Keskitalo, R.
    Kikuchi, S.
    16TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2019), 2020, 1468
  • [29] Deployment of POLARBEAR-2b
    Russell, Megan
    Sakaguri, Kana
    Lowry, Lindsay Ng
    Adkins, Tylor
    Arnold, Kam
    Baccigalupi, Carlo
    Crowley, Kevin T.
    Elleflot, Tucker
    Farias, Nicole
    Hazumi, Masashi
    Ito, Jennifer
    Jeong, Oliver
    Lee, Adrian
    Lew, Michael
    Nelson, Jacob
    Siritanasak, Praween
    Tsan, Tran
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2024, 216 (1-2) : 237 - 245
  • [30] Design and characterization of the POLARBEAR-2b and POLARBEAR-2c cosmic microwave background cryogenic receivers
    Howe, L.
    Tsai, C.
    Lowry, L.
    Arnold, K.
    Coppi, G.
    Groh, J.
    Guo, X.
    Keating, B.
    Lee, A.
    May, A. J.
    Piccirillo, L.
    Stebor, N.
    Teply, G.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY IX, 2018, 10708