Thermodynamic Formalism for Random Non-uniformly Expanding Maps

被引:0
|
作者
Manuel Stadlbauer
Shintaro Suzuki
Paulo Varandas
机构
[1] Universidade Federal do Rio de Janeiro,Departamento de Matemática
[2] Keio University,Keio Institute of Pure and Applied Sciences (KiPAS)
[3] Universidade Federal da Bahia,Departamento de Matemática
[4] Centro de Matemática da Universidade do Porto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We develop a quenched thermodynamic formalism for a wide class of random maps with non-uniform expansion, where no Markov structure, no uniformly bounded degree or the existence of some expanding dynamics is required. We prove that every measurable and fibered C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-potential at high temperature admits a unique equilibrium state which satisfies a weak Gibbs property, and has exponential decay of correlations. The arguments combine a functional analytic approach for the decay of correlations (using Birkhoff cone methods) and Carathéodory-type structures to describe the relative pressure of not necessary compact invariant sets in random dynamical systems. We establish also a variational principle for the relative pressure of random dynamical systems.
引用
收藏
页码:369 / 427
页数:58
相关论文
共 50 条