Multifractal analysis in non-uniformly hyperbolic interval maps

被引:0
|
作者
Ma, Guanzhong [1 ]
Shen, Wenqiang [2 ]
Yao, Xiao [3 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Peoples R China
[2] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Peoples R China
[3] Nankai Univ, Sch Math Sci & LPMC, Tianjin 300071, Peoples R China
关键词
multifractal analysis; Hausdorff dimension; Moran set; TOPOLOGICAL-ENTROPY; EQUILIBRIUM MEASURES; LYAPUNOV SPECTRUM; DIVERGENCE POINTS; SPECIFICATION; DIMENSION; SYSTEMS; SETS;
D O I
10.1088/1361-6544/ac355d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a framework for the construction of Moran set driven by dynamics. Under this framework, we study the Hausdorff dimension of the generalized intrinsic level set with respect to the given ergodic measure in a class of non-uniformly hyperbolic interval maps with finitely many branches.
引用
收藏
页码:110 / 133
页数:24
相关论文
共 50 条
  • [1] Multifractal analysis of non-uniformly hyperbolic systems
    Anders Johansson
    Thomas M. Jordan
    Anders Öberg
    Mark Pollicott
    [J]. Israel Journal of Mathematics, 2010, 177 : 125 - 144
  • [2] Multifractal analysis of non-uniformly hyperbolic systems
    Johansson, Anders
    Jordan, Thomas M.
    Oberg, Anders
    Pollicott, Mark
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) : 125 - 144
  • [3] Multifractal analysis of the historic set in non-uniformly hyperbolic systems
    Ma, Guan-zhong
    Yao, Xiao
    [J]. ARCHIV DER MATHEMATIK, 2017, 108 (04) : 405 - 413
  • [4] Multifractal Analysis of Dimension Spectrum in Non-uniformly Hyperbolic Systems
    Xiao Yao
    Guan-Zhong Ma
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 3069 - 3090
  • [5] Higher dimensional multifractal analysis of non-uniformly hyperbolic systems
    Ma, Guan-Zhong
    Yao, Xiao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 669 - 684
  • [6] Multifractal Analysis of Dimension Spectrum in Non-uniformly Hyperbolic Systems
    Yao, Xiao
    Ma, Guan-Zhong
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3069 - 3090
  • [7] Multifractal analysis of the historic set in non-uniformly hyperbolic systems
    Guan-zhong Ma
    Xiao Yao
    [J]. Archiv der Mathematik, 2017, 108 : 405 - 413
  • [8] Multifractal analysis of ergodic averages in some non-uniformly hyperbolic systems
    Yin, Zheng
    Chen, Ercai
    Zhou, Xiaoyao
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 2334 - 2350
  • [9] Approximation and asymptotics of dimension for some non-uniformly hyperbolic interval maps with holes
    Persson, Tomas
    [J]. NONLINEARITY, 2007, 20 (11) : 2615 - 2632
  • [10] Building Thermodynamics for Non-uniformly Hyperbolic Maps
    Climenhaga V.
    Pesin Y.
    [J]. Arnold Mathematical Journal, 2017, 3 (1) : 37 - 82