Rational Normal Forms and Stability of Small Solutions to Nonlinear Schrödinger Equations

被引:0
|
作者
Joackim Bernier
Erwan Faou
Benoît Grébert
机构
[1] Univ Rennes,
[2] INRIA,undefined
[3] CNRS,undefined
[4] Laboratoire de Mathématiques Jean Leray,undefined
[5] Université de Nantes,undefined
[6] UMR CNRS 6629,undefined
来源
Annals of PDE | 2020年 / 6卷
关键词
Birkhoff normal form; Resonances; Hamiltonian PDEs; 37K55; 35B40; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider general classes of nonlinear Schrödinger equations on the circle with nontrivial cubic part and without external parameters. We construct a new type of normal forms, namely rational normal forms, on open sets surrounding the origin in high Sobolev regularity. With this new tool we prove that, given a large constant M and a sufficiently small parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, for generic initial data of size ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, the flow is conjugated to an integrable flow up to an arbitrary small remainder of order εM+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{M+1}$$\end{document}. This implies that for such initial data u(0) we control the Sobolev norm of the solution u(t) for time of order ε-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{-M}$$\end{document}. Furthermore this property is locally stable: if v(0) is sufficiently close to u(0) (of order ε3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{3/2}$$\end{document}) then the solution v(t) is also controled for time of order ε-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{-M}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] On the hyperbolic nonlinear Schrödinger equations
    Saut, Jean-Claude
    Wang, Yuexun
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [32] The breather and semi-rational rogue wave solutions for the coupled mixed derivative nonlinear Schrödinger equations
    Jie Jin
    Yi Zhang
    Rusuo Ye
    Lifei Wu
    Nonlinear Dynamics, 2023, 111 : 633 - 643
  • [33] Blow-up Solutions for Mixed Nonlinear Schrdinger Equations
    Shao Bin TAN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2004, 20 (01) : 115 - 124
  • [34] The large time asymptotic solutions of nonlinear Schrödinger type equations
    Liu, Baoping
    Soffer, Avy
    APPLIED NUMERICAL MATHEMATICS, 2024, 199 : 73 - 84
  • [35] On solutions of nonlinear Schrödinger equations with Cantor-type spectrum
    Anne Boutet de Monvel
    Ira Egorova
    Journal d’Analyse Mathematique, 1997, 72 (1): : 1 - 20
  • [36] Self-similar solutions of equations of the nonlinear Schrödinger type
    V. G. Marikhin
    A. B. Shabat
    M. Boiti
    F. Pempinelli
    Journal of Experimental and Theoretical Physics, 2000, 90 : 553 - 561
  • [37] Blow-up Solutions for Mixed Nonlinear Schrödinger Equations
    Shao Bin Tan
    Acta Mathematica Sinica, 2004, 20 : 115 - 124
  • [38] Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations
    Jianfu Yang
    Jinge Yang
    Science China Mathematics, 2022, 65 : 1383 - 1412
  • [39] Blow-up solutions of inhomogeneous nonlinear Schrödinger equations
    Peter Y. H. Pang
    Hongyan Tang
    Youde Wang
    Calculus of Variations and Partial Differential Equations, 2006, 26 : 137 - 169
  • [40] Convergence of ground state solutions for nonlinear Schrdinger equations on graphs
    Ning Zhang
    Liang Zhao
    Science China(Mathematics), 2018, 61 (08) : 1481 - 1494